|
|
@ -20,10 +20,10 @@ unsigned long long fac(int x){ |
|
|
|
return prod; |
|
|
|
} |
|
|
|
|
|
|
|
double exponential(double x){ |
|
|
|
double exponential(double exp){ |
|
|
|
double sum = 0.0; |
|
|
|
for(int i = 0; i<=21; i++){ |
|
|
|
sum += (1.0/fac(i)*(powerD(i,x))); |
|
|
|
sum += (1.0/fac(i)*(powerD(i,exp))); |
|
|
|
} |
|
|
|
return sum; |
|
|
|
} |
|
|
@ -32,13 +32,13 @@ double euler(){ |
|
|
|
return exponential(1); |
|
|
|
} |
|
|
|
|
|
|
|
double squashDegreesTo360(double x){ |
|
|
|
int multiple = x / 360; |
|
|
|
return x - (360*multiple); |
|
|
|
double squashDegreesTo360(double degrees){ |
|
|
|
int multiple = degrees / 360; |
|
|
|
return degrees - (360*multiple); |
|
|
|
} |
|
|
|
|
|
|
|
double radians(double d){ |
|
|
|
return d * PI / 180; |
|
|
|
double radians(double degrees){ |
|
|
|
return degrees * PI / 180; |
|
|
|
} |
|
|
|
|
|
|
|
double pi(double eps){ |
|
|
@ -56,19 +56,20 @@ double pi(double eps){ |
|
|
|
return pi; |
|
|
|
} |
|
|
|
|
|
|
|
double sinD(double x){ |
|
|
|
if (x>=360.0){ |
|
|
|
x = squashDegreesTo360(x); |
|
|
|
double sinD(double degrees){ |
|
|
|
|
|
|
|
if (degrees>=360.0){ |
|
|
|
degrees = squashDegreesTo360(degrees); |
|
|
|
} |
|
|
|
double sum = 0.0; |
|
|
|
double currvalue; |
|
|
|
x = radians(x); |
|
|
|
double radian = radians(degrees); |
|
|
|
double power; |
|
|
|
unsigned long long faculty; |
|
|
|
for (int i = 0; i <= 9; i++) |
|
|
|
{ |
|
|
|
currvalue = 1.0; |
|
|
|
currvalue *= powerD(2*i+1,x); |
|
|
|
currvalue *= powerD(2*i+1, radian); |
|
|
|
currvalue /= (double) fac(2*i+1); |
|
|
|
if(i%2==0) sum += currvalue; |
|
|
|
else sum -= currvalue; |
|
|
|