Ein Roboter mit bürstenlosem Antrieb, differenzial und NRF24L01 Funk. Großflächig gebaut um ein großes Solarpanel aufzunehmen. https://gitlab.informatik.hs-fulda.de/fdai5253/roboter
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
6.3 KiB

/*
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
*/
/**
* Example for efficient call-response using ack-payloads
*
* This example continues to make use of all the normal functionality of the radios including
* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
* This allows very fast call-response communication, with the responding radio never having to
* switch out of Primary Receiver mode to send back a payload, but having the option to switch to
* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// See http://www.airspayce.com/mikem/bcm2835/group__constants.html#ga63c029bd6500167152db4e57736d0939 and the related enumerations for pin information.
// Setup for GPIO 22 CE and CE0 CSN with SPI Speed @ 4Mhz
//RF24 radio(RPI_V2_GPIO_P1_22, BCM2835_SPI_CS0, BCM2835_SPI_SPEED_4MHZ);
// NEW: Setup for RPi B+
//RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ);
// Setup for GPIO 15 CE and CE0 CSN with SPI Speed @ 8Mhz
RF24 radio(RPI_V2_GPIO_P1_15, RPI_V2_GPIO_P1_24, BCM2835_SPI_SPEED_8MHZ);
/*** RPi Alternate ***/
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
// See http://tmrh20.github.io/RF24/RPi.html for more information on usage
//RPi Alternate, with MRAA
//RF24 radio(15,0);
//RPi Alternate, with SPIDEV - Note: Edit RF24/arch/BBB/spi.cpp and set 'this->device = "/dev/spidev0.0";;' or as listed in /dev
//RF24 radio(22,0);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://tmrh20.github.io/RF24/pages.html for more information on usage
// See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
// Setup for ARM(Linux) devices like BBB using spidev (default is "/dev/spidev1.0" )
//RF24 radio(115,0);
//BBB Alternate, with mraa
// CE pin = (Header P9, Pin 13) = 59 = 13 + 46
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
//RF24 radio(59,0);
/********** User Config *********/
// Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default.
bool radioNumber = 1;
/********************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint8_t addresses[][6] = {"1Node","2Node"};
bool role_ping_out = 1, role_pong_back = 0, role = 0;
uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth
int main(int argc, char** argv){
cout << "RPi/RF24/examples/gettingstarted_call_response\n";
radio.begin();
radio.enableAckPayload(); // Allow optional ack payloads
radio.enableDynamicPayloads();
radio.printDetails(); // Dump the configuration of the rf unit for debugging
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>";
getline(cin,input);
if(input.length() == 1) {
myChar = input[0];
if(myChar == '0'){
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
}else{ cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
// This opens two pipes for these two nodes to communicate
// back and forth.
if ( !radioNumber ) {
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1,addresses[1]);
}else{
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1,addresses[0]);
}
radio.startListening();
radio.writeAckPayload(1,&counter,1);
// forever loop
while (1){
/****************** Ping Out Role ***************************/
if (role == role_ping_out){ // Radio is in ping mode
uint8_t gotByte; // Initialize a variable for the incoming response
radio.stopListening(); // First, stop listening so we can talk.
printf("Now sending %d as payload. ",counter); // Use a simple byte counter as payload
unsigned long time = millis(); // Record the current microsecond count
if ( radio.write(&counter,1) ){ // Send the counter variable to the other radio
if(!radio.available()){ // If nothing in the buffer, we got an ack but it is blank
printf("Got blank response. round-trip delay: %lu ms\n\r",millis()-time);
}else{
while(radio.available() ){ // If an ack with payload was received
radio.read( &gotByte, 1 ); // Read it, and display the response time
printf("Got response %d, round-trip delay: %lu ms\n\r",gotByte,millis()-time);
counter++; // Increment the counter variable
}
}
}else{ printf("Sending failed.\n\r"); } // If no ack response, sending failed
sleep(1); // Try again later
}
/****************** Pong Back Role ***************************/
if ( role == role_pong_back ) {
uint8_t pipeNo, gotByte; // Declare variables for the pipe and the byte received
if( radio.available(&pipeNo)){ // Read all available payloads
radio.read( &gotByte, 1 );
// Since this is a call-response. Respond directly with an ack payload.
gotByte += 1; // Ack payloads are much more efficient than switching to transmit mode to respond to a call
radio.writeAckPayload(pipeNo,&gotByte, 1 ); // This can be commented out to send empty payloads.
printf("Loaded next response %d \n\r", gotByte);
delay(900); //Delay after a response to minimize CPU usage on RPi
//Expects a payload every second
}
}
} //while 1
} //main