Ein Roboter mit bürstenlosem Antrieb, differenzial und NRF24L01 Funk. Großflächig gebaut um ein großes Solarpanel aufzunehmen.
https://gitlab.informatik.hs-fulda.de/fdai5253/roboter
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
7.7 KiB
226 lines
7.7 KiB
/*
|
|
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
|
|
TMRh20 2014 - Updates to the library allow sleeping both in TX and RX modes:
|
|
TX Mode: The radio can be powered down (.9uA current) and the Arduino slept using the watchdog timer
|
|
RX Mode: The radio can be left in standby mode (22uA current) and the Arduino slept using an interrupt pin
|
|
*/
|
|
|
|
/**
|
|
* Example RF Radio Ping Pair which Sleeps between Sends
|
|
*
|
|
* This is an example of how to use the RF24 class to create a battery-
|
|
* efficient system. It is just like the GettingStarted_CallResponse example, but the
|
|
* ping node powers down the radio and sleeps the MCU after every
|
|
* ping/pong cycle, and the receiver sleeps between payloads.
|
|
*
|
|
* Write this sketch to two different nodes,
|
|
* connect the role_pin to ground on one. The ping node sends the current
|
|
* time to the pong node, which responds by sending the value back. The ping
|
|
* node can then see how long the whole cycle took.
|
|
*/
|
|
|
|
#include <SPI.h>
|
|
#include <avr/sleep.h>
|
|
#include <avr/power.h>
|
|
#include "nRF24L01.h"
|
|
#include "RF24.h"
|
|
#include "printf.h"
|
|
|
|
|
|
// Set up nRF24L01 radio on SPI bus plus pins 7 & 8
|
|
RF24 radio(7,8);
|
|
|
|
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
|
|
// Leave open to be the 'ping' transmitter
|
|
const int role_pin = 5;
|
|
|
|
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL }; // Radio pipe addresses for the 2 nodes to communicate.
|
|
|
|
// Role management
|
|
// Set up role. This sketch uses the same software for all the nodes
|
|
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
|
|
// which node it is.
|
|
|
|
// The various roles supported by this sketch
|
|
typedef enum { role_ping_out = 1, role_pong_back } role_e;
|
|
|
|
// The debug-friendly names of those roles
|
|
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
|
|
|
|
// The role of the current running sketch
|
|
role_e role;
|
|
|
|
|
|
// Sleep declarations
|
|
typedef enum { wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s, wdt_2s, wdt_4s, wdt_8s } wdt_prescalar_e;
|
|
|
|
void setup_watchdog(uint8_t prescalar);
|
|
void do_sleep(void);
|
|
|
|
const short sleep_cycles_per_transmission = 4;
|
|
volatile short sleep_cycles_remaining = sleep_cycles_per_transmission;
|
|
|
|
|
|
|
|
void setup(){
|
|
|
|
// set up the role pin
|
|
pinMode(role_pin, INPUT);
|
|
digitalWrite(role_pin,HIGH);
|
|
delay(20); // Just to get a solid reading on the role pin
|
|
|
|
// read the address pin, establish our role
|
|
if ( digitalRead(role_pin) )
|
|
role = role_ping_out;
|
|
else
|
|
role = role_pong_back;
|
|
|
|
Serial.begin(115200);
|
|
printf_begin();
|
|
Serial.print(F("\n\rRF24/examples/pingpair_sleepy/\n\rROLE: "));
|
|
Serial.println(role_friendly_name[role]);
|
|
|
|
// Prepare sleep parameters
|
|
// Only the ping out role uses WDT. Wake up every 4s to send a ping
|
|
//if ( role == role_ping_out )
|
|
setup_watchdog(wdt_4s);
|
|
|
|
// Setup and configure rf radio
|
|
|
|
radio.begin();
|
|
|
|
// Open pipes to other nodes for communication
|
|
|
|
// This simple sketch opens two pipes for these two nodes to communicate
|
|
// back and forth.
|
|
// Open 'our' pipe for writing
|
|
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
|
|
|
|
if ( role == role_ping_out ) {
|
|
radio.openWritingPipe(pipes[0]);
|
|
radio.openReadingPipe(1,pipes[1]);
|
|
} else {
|
|
radio.openWritingPipe(pipes[1]);
|
|
radio.openReadingPipe(1,pipes[0]);
|
|
}
|
|
|
|
// Start listening
|
|
radio.startListening();
|
|
|
|
// Dump the configuration of the rf unit for debugging
|
|
//radio.printDetails();
|
|
}
|
|
|
|
void loop(){
|
|
|
|
|
|
if (role == role_ping_out) { // Ping out role. Repeatedly send the current time
|
|
radio.powerUp(); // Power up the radio after sleeping
|
|
radio.stopListening(); // First, stop listening so we can talk.
|
|
|
|
unsigned long time = millis(); // Take the time, and send it.
|
|
Serial.print(F("Now sending... "));
|
|
Serial.println(time);
|
|
|
|
radio.write( &time, sizeof(unsigned long) );
|
|
|
|
radio.startListening(); // Now, continue listening
|
|
|
|
unsigned long started_waiting_at = millis(); // Wait here until we get a response, or timeout (250ms)
|
|
bool timeout = false;
|
|
while ( ! radio.available() ){
|
|
if (millis() - started_waiting_at > 250 ){ // Break out of the while loop if nothing available
|
|
timeout = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( timeout ) { // Describe the results
|
|
Serial.println(F("Failed, response timed out."));
|
|
} else {
|
|
unsigned long got_time; // Grab the response, compare, and send to debugging spew
|
|
radio.read( &got_time, sizeof(unsigned long) );
|
|
|
|
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
|
|
}
|
|
|
|
// Shut down the system
|
|
delay(500); // Experiment with some delay here to see if it has an effect
|
|
// Power down the radio.
|
|
radio.powerDown(); // NOTE: The radio MUST be powered back up again manually
|
|
|
|
// Sleep the MCU.
|
|
do_sleep();
|
|
|
|
|
|
}
|
|
|
|
|
|
// Pong back role. Receive each packet, dump it out, and send it back
|
|
if ( role == role_pong_back ) {
|
|
|
|
if ( radio.available() ) { // if there is data ready
|
|
|
|
unsigned long got_time;
|
|
while (radio.available()) { // Dump the payloads until we've gotten everything
|
|
radio.read( &got_time, sizeof(unsigned long) ); // Get the payload, and see if this was the last one.
|
|
// Spew it. Include our time, because the ping_out millis counter is unreliable
|
|
printf("Got payload %lu @ %lu...",got_time,millis()); // due to it sleeping
|
|
}
|
|
|
|
radio.stopListening(); // First, stop listening so we can talk
|
|
radio.write( &got_time, sizeof(unsigned long) ); // Send the final one back.
|
|
Serial.println(F("Sent response."));
|
|
radio.startListening(); // Now, resume listening so we catch the next packets.
|
|
} else {
|
|
Serial.println(F("Sleeping"));
|
|
delay(50); // Delay so the serial data can print out
|
|
do_sleep();
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void wakeUp(){
|
|
sleep_disable();
|
|
}
|
|
|
|
// Sleep helpers
|
|
|
|
//Prescaler values
|
|
// 0=16ms, 1=32ms,2=64ms,3=125ms,4=250ms,5=500ms
|
|
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
|
|
|
|
void setup_watchdog(uint8_t prescalar){
|
|
|
|
uint8_t wdtcsr = prescalar & 7;
|
|
if ( prescalar & 8 )
|
|
wdtcsr |= _BV(WDP3);
|
|
MCUSR &= ~_BV(WDRF); // Clear the WD System Reset Flag
|
|
WDTCSR = _BV(WDCE) | _BV(WDE); // Write the WD Change enable bit to enable changing the prescaler and enable system reset
|
|
WDTCSR = _BV(WDCE) | wdtcsr | _BV(WDIE); // Write the prescalar bits (how long to sleep, enable the interrupt to wake the MCU
|
|
}
|
|
|
|
ISR(WDT_vect)
|
|
{
|
|
//--sleep_cycles_remaining;
|
|
Serial.println(F("WDT"));
|
|
}
|
|
|
|
void do_sleep(void)
|
|
{
|
|
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
|
|
sleep_enable();
|
|
attachInterrupt(0,wakeUp,LOW);
|
|
WDTCSR |= _BV(WDIE);
|
|
sleep_mode(); // System sleeps here
|
|
// The WDT_vect interrupt wakes the MCU from here
|
|
sleep_disable(); // System continues execution here when watchdog timed out
|
|
detachInterrupt(0);
|
|
WDTCSR &= ~_BV(WDIE);
|
|
}
|