/* Copyright (C) 2011 James Coliz, Jr. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ /** * Example using Dynamic Payloads * * This is an example of how to use payloads of a varying (dynamic) size. */ #include #include "RF24.h" // // Hardware configuration // // Set up nRF24L01 radio on SPI bus plus pins 8 & 9 RF24 radio(8,9); // Use multicast? // sets the multicast behavior this unit in hardware. Connect to GND to use unicast // Leave open (default) to use multicast. const int multicast_pin = 6 ; // sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver // Leave open to be the 'ping' transmitter const int role_pin = 7; bool multicast = true ; // // Topology // // Radio pipe addresses for the 2 nodes to communicate. const uint64_t pipes[2] = { 0xEEFAFDFDEELL, 0xEEFDFAF50DFLL }; // // Role management // // Set up role. This sketch uses the same software for all the nodes // in this system. Doing so greatly simplifies testing. The hardware itself specifies // which node it is. // // This is done through the role_pin // // The various roles supported by this sketch typedef enum { role_ping_out = 1, role_pong_back } role_e; // The debug-friendly names of those roles const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"}; // The role of the current running sketch role_e role; // // Payload // const int min_payload_size = 1; const int max_payload_size = 32; const int payload_size_increments_by = 1; int next_payload_size = min_payload_size; char receive_payload[max_payload_size+1]; // +1 to allow room for a terminating NULL char void setup(void) { // // Multicast // pinMode(multicast_pin, INPUT); digitalWrite(multicast_pin,HIGH); delay( 20 ) ; // read multicast role, LOW for unicast if( digitalRead( multicast_pin ) ) multicast = true ; else multicast = false ; // // Role // // set up the role pin pinMode(role_pin, INPUT); digitalWrite(role_pin,HIGH); delay( 20 ); // Just to get a solid reading on the role pin // read the address pin, establish our role if ( digitalRead(role_pin) ) role = role_ping_out; else role = role_pong_back; // // Print preamble // Serial.begin(115200); Serial.println(F("RF24/examples/pingpair_multi_dyn/")); Serial.print(F("ROLE: ")); Serial.println(role_friendly_name[role]); Serial.print(F("MULTICAST: ")); Serial.println(multicast ? F("true (unreliable)") : F("false (reliable)")); // // Setup and configure rf radio // radio.begin(); // enable dynamic payloads radio.enableDynamicPayloads(); radio.setCRCLength( RF24_CRC_16 ) ; // optionally, increase the delay between retries & # of retries radio.setRetries( 15, 5 ) ; radio.setAutoAck( true ) ; //radio.setPALevel( RF24_PA_LOW ) ; // // Open pipes to other nodes for communication // // This simple sketch opens two pipes for these two nodes to communicate // back and forth. // Open 'our' pipe for writing // Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading) if ( role == role_ping_out ) { radio.openWritingPipe(pipes[0]); radio.openReadingPipe(1,pipes[1]); } else { radio.openWritingPipe(pipes[1]); radio.openReadingPipe(1,pipes[0]); } // // Start listening // radio.powerUp() ; radio.startListening(); // // Dump the configuration of the rf unit for debugging // radio.printDetails(); } void loop(void) { // // Ping out role. Repeatedly send the current time // if (role == role_ping_out) { // The payload will always be the same, what will change is how much of it we send. static char send_payload[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ789012"; // First, stop listening so we can talk. radio.stopListening(); // Take the time, and send it. This will block until complete Serial.print(F("Now sending length ")); Serial.println(next_payload_size); radio.write( send_payload, next_payload_size, multicast ); // Now, continue listening radio.startListening(); // Wait here until we get a response, or timeout unsigned long started_waiting_at = millis(); bool timeout = false; while ( ! radio.available() && ! timeout ) if (millis() - started_waiting_at > 500 ) timeout = true; // Describe the results if ( timeout ) { Serial.println(F("Failed, response timed out.")); } else { // Grab the response, compare, and send to debugging spew uint8_t len = radio.getDynamicPayloadSize(); radio.read( receive_payload, len ); // Put a zero at the end for easy printing receive_payload[len] = 0; // Spew it Serial.print(F("Got response size=")); Serial.print(len); Serial.print(F(" value=")); Serial.println(receive_payload); } // Update size for next time. next_payload_size += payload_size_increments_by; if ( next_payload_size > max_payload_size ) next_payload_size = min_payload_size; // Try again 1s later delay(250); } // // Pong back role. Receive each packet, dump it out, and send it back // if ( role == role_pong_back ) { // if there is data ready if ( radio.available() ) { // Dump the payloads until we've gotten everything uint8_t len; bool done = false; while (radio.available()) { // Fetch the payload, and see if this was the last one. len = radio.getDynamicPayloadSize(); radio.read( receive_payload, len ); // Put a zero at the end for easy printing receive_payload[len] = 0; // Spew it Serial.print(F("Got response size=")); Serial.print(len); Serial.print(F(" value=")); Serial.println(receive_payload); } // First, stop listening so we can talk radio.stopListening(); // Send the final one back. radio.write( receive_payload, len, multicast ); Serial.println(F("Sent response.")); // Now, resume listening so we catch the next packets. radio.startListening(); } } } // vim:cin:ai:sts=2 sw=2 ft=cpp