/* TMRh20 2014 - Updated to work with optimized RF24 Arduino library */ /** * Example for efficient call-response using ack-payloads * * This example continues to make use of all the normal functionality of the radios including * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well. * This allows very fast call-response communication, with the responding radio never having to * switch out of Primary Receiver mode to send back a payload, but having the option to switch to * primary transmitter if wanting to initiate communication instead of respond to a commmunication. */ #include #include #include #include #include #include using namespace std; // // Hardware configuration // Configure the appropriate pins for your connections /****************** Raspberry Pi ***********************/ // Radio CE Pin, CSN Pin, SPI Speed // See http://www.airspayce.com/mikem/bcm2835/group__constants.html#ga63c029bd6500167152db4e57736d0939 and the related enumerations for pin information. // Setup for GPIO 22 CE and CE0 CSN with SPI Speed @ 4Mhz //RF24 radio(RPI_V2_GPIO_P1_22, BCM2835_SPI_CS0, BCM2835_SPI_SPEED_4MHZ); // NEW: Setup for RPi B+ //RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ); // Setup for GPIO 15 CE and CE0 CSN with SPI Speed @ 8Mhz RF24 radio(RPI_V2_GPIO_P1_15, RPI_V2_GPIO_P1_24, BCM2835_SPI_SPEED_8MHZ); /*** RPi Alternate ***/ //Note: Specify SPI BUS 0 or 1 instead of CS pin number. // See http://tmrh20.github.io/RF24/RPi.html for more information on usage //RPi Alternate, with MRAA //RF24 radio(15,0); //RPi Alternate, with SPIDEV - Note: Edit RF24/arch/BBB/spi.cpp and set 'this->device = "/dev/spidev0.0";;' or as listed in /dev //RF24 radio(22,0); /****************** Linux (BBB,x86,etc) ***********************/ // See http://tmrh20.github.io/RF24/pages.html for more information on usage // See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA // See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV // Setup for ARM(Linux) devices like BBB using spidev (default is "/dev/spidev1.0" ) //RF24 radio(115,0); //BBB Alternate, with mraa // CE pin = (Header P9, Pin 13) = 59 = 13 + 46 //Note: Specify SPI BUS 0 or 1 instead of CS pin number. //RF24 radio(59,0); /********** User Config *********/ // Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default. bool radioNumber = 1; /********************************/ // Radio pipe addresses for the 2 nodes to communicate. const uint8_t addresses[][6] = {"1Node","2Node"}; bool role_ping_out = 1, role_pong_back = 0, role = 0; uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth int main(int argc, char** argv){ cout << "RPi/RF24/examples/gettingstarted_call_response\n"; radio.begin(); radio.enableAckPayload(); // Allow optional ack payloads radio.enableDynamicPayloads(); radio.printDetails(); // Dump the configuration of the rf unit for debugging /********* Role chooser ***********/ printf("\n ************ Role Setup ***********\n"); string input = ""; char myChar = {0}; cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>"; getline(cin,input); if(input.length() == 1) { myChar = input[0]; if(myChar == '0'){ cout << "Role: Pong Back, awaiting transmission " << endl << endl; }else{ cout << "Role: Ping Out, starting transmission " << endl << endl; role = role_ping_out; } } /***********************************/ // This opens two pipes for these two nodes to communicate // back and forth. if ( !radioNumber ) { radio.openWritingPipe(addresses[0]); radio.openReadingPipe(1,addresses[1]); }else{ radio.openWritingPipe(addresses[1]); radio.openReadingPipe(1,addresses[0]); } radio.startListening(); radio.writeAckPayload(1,&counter,1); // forever loop while (1){ /****************** Ping Out Role ***************************/ if (role == role_ping_out){ // Radio is in ping mode uint8_t gotByte; // Initialize a variable for the incoming response radio.stopListening(); // First, stop listening so we can talk. printf("Now sending %d as payload. ",counter); // Use a simple byte counter as payload unsigned long time = millis(); // Record the current microsecond count if ( radio.write(&counter,1) ){ // Send the counter variable to the other radio if(!radio.available()){ // If nothing in the buffer, we got an ack but it is blank printf("Got blank response. round-trip delay: %lu ms\n\r",millis()-time); }else{ while(radio.available() ){ // If an ack with payload was received radio.read( &gotByte, 1 ); // Read it, and display the response time printf("Got response %d, round-trip delay: %lu ms\n\r",gotByte,millis()-time); counter++; // Increment the counter variable } } }else{ printf("Sending failed.\n\r"); } // If no ack response, sending failed sleep(1); // Try again later } /****************** Pong Back Role ***************************/ if ( role == role_pong_back ) { uint8_t pipeNo, gotByte; // Declare variables for the pipe and the byte received if( radio.available(&pipeNo)){ // Read all available payloads radio.read( &gotByte, 1 ); // Since this is a call-response. Respond directly with an ack payload. gotByte += 1; // Ack payloads are much more efficient than switching to transmit mode to respond to a call radio.writeAckPayload(pipeNo,&gotByte, 1 ); // This can be commented out to send empty payloads. printf("Loaded next response %d \n\r", gotByte); delay(900); //Delay after a response to minimize CPU usage on RPi //Expects a payload every second } } } //while 1 } //main