|
|
/* Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */
/** * Full test on single RF pair * * This sketches uses as many RF24 methods as possible in a single test. * * To operate: * Upload this sketch on two nodes, each with IRQ -> pin 2 * One node needs pin 7 -> GND, the other NC. That's the receiving node * Monitor the sending node's serial output * Look for "+OK PASS" or "+OK FAIL" */
#include <SPI.h> #include "nRF24L01.h" #include "RF24.h" #include "printf.h"
// // Hardware configuration //
// Set up nRF24L01 radio on SPI bus plus pins 8 & 9
RF24 radio(7,8);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver // Leave open to be the 'ping' transmitter const short role_pin = 5;
// // Topology //
// Single radio pipe address for the 2 nodes to communicate. const uint64_t pipe = 0xE8E8F0F0E1LL;
// // Role management // // Set up role. This sketch uses the same software for all the nodes in this // system. Doing so greatly simplifies testing. The hardware itself specifies // which node it is. // // This is done through the role_pin //
// The various roles supported by this sketch typedef enum { role_sender = 1, role_receiver } role_e;
// The debug-friendly names of those roles const char* role_friendly_name[] = { "invalid", "Sender", "Receiver"};
// The role of the current running sketch role_e role;
// Interrupt handler, check the radio because we got an IRQ void check_radio(void);
// // Payload //
const int min_payload_size = 4; const int max_payload_size = 32; int payload_size_increments_by = 2; int next_payload_size = min_payload_size;
char receive_payload[max_payload_size+1]; // +1 to allow room for a terminating NULL char
// // Test state //
bool done; //*< Are we done with the test? */ bool passed; //*< Have we passed the test? */ bool notified; //*< Have we notified the user we're done? */ const int num_needed = 10; //*< How many success/failures until we're done? */ int receives_remaining = num_needed; //*< How many ack packets until we declare victory? */ int failures_remaining = num_needed; //*< How many more failed sends until we declare failure? */ const int interval = 100; //*< ms to wait between sends */
char configuration = '1'; //*< Configuration key, one char sent in by the test framework to tell us how to configure, this is the default */
uint8_t pipe_number = 1; // Which pipe to send on.
void one_ok(void) { // Have we received enough yet? if ( ! --receives_remaining ) { done = true; passed = true; } }
void one_failed(void) { // Have we failed enough yet? if ( ! --failures_remaining ) { done = true; passed = false; } }
// // Setup //
void setup(void) { // // Role //
// set up the role pin pinMode(role_pin, INPUT); digitalWrite(role_pin,HIGH); delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role if ( digitalRead(role_pin) ) role = role_sender; else role = role_receiver;
// // Print preamble //
Serial.begin(115200); printf_begin(); printf("\n\rRF24/tests/pingpair_test/\n\r"); printf("ROLE: %s\n\r",role_friendly_name[role]);
// // Read configuration from serial // // It would be a much better test if this program could accept configuration // from the serial port. Then it would be possible to run the same test under // lots of different circumstances. // // The idea is that we will print "+READY" at this point. The python script // will wait for it, and then send down a configuration script that we // execute here and then run with. // // The test controller will need to configure the receiver first, then go run // the test on the sender. //
printf("+READY press any key to start\n\r\n\r");
while (! Serial.available() ) {} configuration = Serial.read(); printf("Configuration\t = %c\n\r",configuration);
// // Setup and configure rf radio //
radio.begin();
// We will be using the Ack Payload feature, so please enable it radio.enableAckPayload();
// Config 2 is special radio config if (configuration=='2') { radio.setCRCLength(RF24_CRC_8); radio.setDataRate(RF24_250KBPS); radio.setChannel(10); } else { //Otherwise, default radio config // Optional: Increase CRC length for improved reliability radio.setCRCLength(RF24_CRC_16);
// Optional: Decrease data rate for improved reliability radio.setDataRate(RF24_1MBPS);
// Optional: Pick a high channel radio.setChannel(90); }
// Config 3 is static payloads only if (configuration == '3') { next_payload_size = 16; payload_size_increments_by = 0; radio.setPayloadSize(next_payload_size); } else { // enable dynamic payloads radio.enableDynamicPayloads(); }
// Config 4 tests out a higher pipe ## if (configuration == '4' && role == role_sender) { // Set top 4 bytes of the address in pipe 1 radio.openReadingPipe(1,pipe & 0xFFFFFFFF00ULL);
// indicate the pipe to use pipe_number = 5; } else if ( role == role_sender ) { radio.openReadingPipe(5,0); }
// // Open pipes to other nodes for communication //
// This simple sketch opens a single pipe for these two nodes to communicate // back and forth. One listens on it, the other talks to it.
if ( role == role_sender ) { radio.openWritingPipe(pipe); } else { radio.openReadingPipe(pipe_number,pipe); }
// // Start listening //
if ( role == role_receiver ) radio.startListening();
// // Dump the configuration of the rf unit for debugging //
radio.printDetails();
// // Attach interrupt handler to interrupt #0 (using pin 2) // on BOTH the sender and receiver //
attachInterrupt(0, check_radio, FALLING); delay(50); if ( role == role_receiver ) printf("\n\r+OK "); }
// // Print buffer // // Printing from the interrupt handler is a bad idea, so we print from there // to this intermediate buffer //
char prbuf[1000]; char *prbuf_end = prbuf + sizeof(prbuf); char *prbuf_in = prbuf; char *prbuf_out = prbuf;
// // Loop //
static uint32_t message_count = 0; static uint32_t last_message_count = 0;
void loop(void) { // // Sender role. Repeatedly send the current time //
if (role == role_sender && !done) { // The payload will always be the same, what will change is how much of it we send. static char send_payload[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ789012";
// First, stop listening so we can talk. radio.stopListening();
// Send it. This will block until complete printf("\n\rNow sending length %i...",next_payload_size); radio.startWrite( send_payload, next_payload_size,0 );
// Update size for next time. next_payload_size += payload_size_increments_by; if ( next_payload_size > max_payload_size ) next_payload_size = min_payload_size; // Try again soon delay(interval); // Timeout if we have not received anything back ever if ( ! last_message_count && millis() > interval * 100 ) { printf("No responses received. Are interrupts connected??\n\r"); done = true; } }
// // Receiver role: Does nothing! All the work is in IRQ // // // Spew print buffer //
size_t write_length = prbuf_in - prbuf_out; if ( write_length ) { Serial.write(reinterpret_cast<uint8_t*>(prbuf_out),write_length); prbuf_out += write_length; } // // Stop the test if we're done and report results // if ( done && ! notified ) { notified = true;
printf("\n\r+OK "); if ( passed ) printf("PASS\n\r\n\r"); else printf("FAIL\n\r\n\r"); }
}
void check_radio(void) { // What happened? bool tx,fail,rx; radio.whatHappened(tx,fail,rx);
// Have we successfully transmitted? if ( tx ) { if ( role == role_sender ) prbuf_in += sprintf(prbuf_in,"Send:OK ");
if ( role == role_receiver ) prbuf_in += sprintf(prbuf_in,"Ack Payload:Sent\n\r"); }
// Have we failed to transmit? if ( fail ) { if ( role == role_sender ) { prbuf_in += sprintf(prbuf_in,"Send:Failed ");
// log status of this line one_failed(); }
if ( role == role_receiver ) prbuf_in += sprintf(prbuf_in,"Ack Payload:Failed\n\r"); }
// Not powering down since radio is in standby mode //if ( ( tx || fail ) && ( role == role_sender ) ) //radio.powerDown();
// Did we receive a message? if ( rx ) { // If we're the sender, we've received an ack payload if ( role == role_sender ) { radio.read(&message_count,sizeof(message_count)); prbuf_in += sprintf(prbuf_in,"Ack:%lu ",message_count); // is this ack what we were expecting? to account // for failures, we simply want to make sure we get a // DIFFERENT ack every time. if ( ( message_count != last_message_count ) || ( configuration=='3' && message_count == 16 ) ) { prbuf_in += sprintf(prbuf_in,"OK "); one_ok(); } else { prbuf_in += sprintf(prbuf_in,"FAILED "); one_failed(); } last_message_count = message_count; }
// If we're the receiver, we've received a time message if ( role == role_receiver ) { // Get this payload and dump it size_t len = max_payload_size; memset(receive_payload,0,max_payload_size); if ( configuration == '3' ){ len = next_payload_size; }else{ len = radio.getDynamicPayloadSize(); } radio.read( receive_payload, len ); // Put a zero at the end for easy printing receive_payload[len] = 0;
// Spew it prbuf_in += sprintf(prbuf_in,"Recv size=%i val=%s len=%u\n\r",len,receive_payload,strlen(receive_payload));
// Add an ack packet for the next time around. // Here we will report back how many bytes we got this time. radio.writeAckPayload( pipe_number, &len, sizeof(len) );
++message_count; }
} }
|