|
|
/* Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */
/** * Example RF Radio Ping Star Group * * This sketch is a more complex example of using the RF24 library for Arduino. * Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the * role_pin low, and the others will be 'ping transmit' units. The ping units * unit will send out the value of millis() once a second. The pong unit will * respond back with a copy of the value. Each ping unit can get that response * back, and determine how long the whole cycle took. * * This example requires a bit more complexity to determine which unit is which. * The pong receiver is identified by having its role_pin tied to ground. * The ping senders are further differentiated by a byte in eeprom. */
#include <SPI.h> #include <EEPROM.h> #include "nRF24L01.h" #include "RF24.h" #include "printf.h"
// // Hardware configuration //
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver // Leave open to be the 'pong' receiver. const int role_pin = 7;
// // Topology //
// Radio pipe addresses for the nodes to communicate. Only ping nodes need // dedicated pipes in this topology. Each ping node has a talking pipe // that it will ping into, and a listening pipe that it will listen for // the pong. The pong node listens on all the ping node talking pipes // and sends the pong back on the sending node's specific listening pipe.
const uint64_t talking_pipes[5] = { 0xF0F0F0F0D2LL, 0xF0F0F0F0C3LL, 0xF0F0F0F0B4LL, 0xF0F0F0F0A5LL, 0xF0F0F0F096LL }; const uint64_t listening_pipes[5] = { 0x3A3A3A3AD2LL, 0x3A3A3A3AC3LL, 0x3A3A3A3AB4LL, 0x3A3A3A3AA5LL, 0x3A3A3A3A96LL };
// // Role management // // Set up role. This sketch uses the same software for all the nodes // in this system. Doing so greatly simplifies testing. The hardware itself specifies // which node it is. // // This is done through the role_pin //
// The various roles supported by this sketch typedef enum { role_invalid = 0, role_ping_out, role_pong_back } role_e;
// The debug-friendly names of those roles const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch role_e role;
// // Address management //
// Where in EEPROM is the address stored? const uint8_t address_at_eeprom_location = 0;
// What is our address (SRAM cache of the address from EEPROM) // Note that zero is an INVALID address. The pong back unit takes address // 1, and the rest are 2-6 uint8_t node_address;
void setup(void) { // // Role //
// set up the role pin pinMode(role_pin, INPUT); digitalWrite(role_pin,HIGH); delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role if ( digitalRead(role_pin) ) role = role_ping_out; else role = role_pong_back;
// // Address //
if ( role == role_pong_back ) node_address = 1; else { // Read the address from EEPROM uint8_t reading = EEPROM.read(address_at_eeprom_location);
// If it is in a valid range for node addresses, it is our // address. if ( reading >= 2 && reading <= 6 ) node_address = reading;
// Otherwise, it is invalid, so set our address AND ROLE to 'invalid' else { node_address = 0; role = role_invalid; } }
// // Print preamble //
Serial.begin(115200); printf_begin(); printf("\n\rRF24/examples/starping/\n\r"); printf("ROLE: %s\n\r",role_friendly_name[role]); printf("ADDRESS: %i\n\r",node_address);
// // Setup and configure rf radio //
radio.begin();
// // Open pipes to other nodes for communication //
// The pong node listens on all the ping node talking pipes // and sends the pong back on the sending node's specific listening pipe. if ( role == role_pong_back ) { radio.openReadingPipe(1,talking_pipes[0]); radio.openReadingPipe(2,talking_pipes[1]); radio.openReadingPipe(3,talking_pipes[2]); radio.openReadingPipe(4,talking_pipes[3]); radio.openReadingPipe(5,talking_pipes[4]); }
// Each ping node has a talking pipe that it will ping into, and a listening // pipe that it will listen for the pong. if ( role == role_ping_out ) { // Write on our talking pipe radio.openWritingPipe(talking_pipes[node_address-2]); // Listen on our listening pipe radio.openReadingPipe(1,listening_pipes[node_address-2]); }
// // Start listening //
radio.startListening();
// // Dump the configuration of the rf unit for debugging //
radio.printDetails();
// // Prompt the user to assign a node address if we don't have one //
if ( role == role_invalid ) { printf("\n\r*** NO NODE ADDRESS ASSIGNED *** Send 1 through 6 to assign an address\n\r"); } }
void loop(void) { // // Ping out role. Repeatedly send the current time //
if (role == role_ping_out) { // First, stop listening so we can talk. radio.stopListening();
// Take the time, and send it. This will block until complete unsigned long time = millis(); printf("Now sending %lu...",time); radio.write( &time, sizeof(unsigned long) );
// Now, continue listening radio.startListening();
// Wait here until we get a response, or timeout (250ms) unsigned long started_waiting_at = millis(); bool timeout = false; while ( ! radio.available() && ! timeout ) if (millis() - started_waiting_at > 250 ) timeout = true;
// Describe the results if ( timeout ) { printf("Failed, response timed out.\n\r"); } else { // Grab the response, compare, and send to debugging spew unsigned long got_time; radio.read( &got_time, sizeof(unsigned long) );
// Spew it printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time); }
// Try again 1s later delay(1000); }
// // Pong back role. Receive each packet, dump it out, and send it back //
if ( role == role_pong_back ) { // if there is data ready uint8_t pipe_num; if ( radio.available(&pipe_num) ) { // Dump the payloads until we've gotten everything unsigned long got_time; bool done = false; while (!done) { // Fetch the payload, and see if this was the last one. done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it printf("Got payload %lu from node %i...",got_time,pipe_num+1); }
// First, stop listening so we can talk radio.stopListening();
// Open the correct pipe for writing radio.openWritingPipe(listening_pipes[pipe_num-1]);
// Retain the low 2 bytes to identify the pipe for the spew uint16_t pipe_id = listening_pipes[pipe_num-1] & 0xffff;
// Send the final one back. radio.write( &got_time, sizeof(unsigned long) ); printf("Sent response to %04x.\n\r",pipe_id);
// Now, resume listening so we catch the next packets. radio.startListening(); } }
// // Listen for serial input, which is how we set the address // if (Serial.available()) { // If the character on serial input is in a valid range... char c = Serial.read(); if ( c >= '1' && c <= '6' ) { // It is our address EEPROM.write(address_at_eeprom_location,c-'0');
// And we are done right now (no easy way to soft reset) printf("\n\rManually reset address to: %c\n\rPress RESET to continue!",c); while(1) ; } } } // vim:ai:ci sts=2 sw=2 ft=cpp
|