|
|
/*
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation.
timingSearch3pin.ino by tong67 ( https://github.com/tong67 )
This sketch can be used to determine the best settleTime values to use in RF24::csn(). The used settleTimeValues are 100/20. Depend on used RC combiniation and voltage drop by LED. It is setup to be completely selfcontained, copied defines and code from RF24 library. The ATtiny85 uses the tiny-core by CodingBadly (https://code.google.com/p/arduino-tiny/)
(Intermediate) results are written to TX (PB3, pin 2). For schematic see rf24ping85.ino */
// nRF24L01.h copy
/* Memory Map */ #define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS 0x07
#define OBSERVE_TX 0x08
#define CD 0x09
#define RX_ADDR_P0 0x0A
#define RX_ADDR_P1 0x0B
#define RX_ADDR_P2 0x0C
#define RX_ADDR_P3 0x0D
#define RX_ADDR_P4 0x0E
#define RX_ADDR_P5 0x0F
#define TX_ADDR 0x10
#define RX_PW_P0 0x11
#define RX_PW_P1 0x12
#define RX_PW_P2 0x13
#define RX_PW_P3 0x14
#define RX_PW_P4 0x15
#define RX_PW_P5 0x16
#define FIFO_STATUS 0x17
#define DYNPD 0x1C
#define FEATURE 0x1D
/* Bit Mnemonics */ #define MASK_RX_DR 6
#define MASK_TX_DS 5
#define MASK_MAX_RT 4
#define EN_CRC 3
#define CRCO 2
#define PWR_UP 1
#define PRIM_RX 0
#define ENAA_P5 5
#define ENAA_P4 4
#define ENAA_P3 3
#define ENAA_P2 2
#define ENAA_P1 1
#define ENAA_P0 0
#define ERX_P5 5
#define ERX_P4 4
#define ERX_P3 3
#define ERX_P2 2
#define ERX_P1 1
#define ERX_P0 0
#define AW 0
#define ARD 4
#define ARC 0
#define PLL_LOCK 4
#define RF_DR 3
#define RF_PWR 6
#define RX_DR 6
#define TX_DS 5
#define MAX_RT 4
#define RX_P_NO 1
#define TX_FULL 0
#define PLOS_CNT 4
#define ARC_CNT 0
#define TX_REUSE 6
#define FIFO_FULL 5
#define TX_EMPTY 4
#define RX_FULL 1
#define RX_EMPTY 0
#define DPL_P5 5
#define DPL_P4 4
#define DPL_P3 3
#define DPL_P2 2
#define DPL_P1 1
#define DPL_P0 0
#define EN_DPL 2
#define EN_ACK_PAY 1
#define EN_DYN_ACK 0
/* Instruction Mnemonics */ #define R_REGISTER 0x00
#define W_REGISTER 0x20
#define REGISTER_MASK 0x1F
#define ACTIVATE 0x50
#define R_RX_PL_WID 0x60
#define R_RX_PAYLOAD 0x61
#define W_TX_PAYLOAD 0xA0
#define W_ACK_PAYLOAD 0xA8
#define FLUSH_TX 0xE1
#define FLUSH_RX 0xE2
#define REUSE_TX_PL 0xE3
#define RF24_NOP 0xFF
/* Non-P omissions */ #define LNA_HCURR 0
/* P model memory Map */ #define RPD 0x09
#define W_TX_PAYLOAD_NO_ACK 0xB0
/* P model bit Mnemonics */ #define RF_DR_LOW 5
#define RF_DR_HIGH 3
#define RF_PWR_LOW 1
#define RF_PWR_HIGH 2
/****************************************************************************/
//ATTiny support code pulled in from https://github.com/jscrane/RF24
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
// see http://gammon.com.au/spi
# define DI 0 // D0, pin 5 Data In
# define DO 1 // D1, pin 6 Data Out (this is *not* MOSI)
# define USCK 2 // D2, pin 7 Universal Serial Interface clock
# define SS 3 // D3, pin 2 Slave Select
#elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
// these depend on the core used (check pins_arduino.h)
// this is for jeelabs' one (based on google-code core)
# define DI 4 // PA6
# define DO 5 // PA5
# define USCK 6 // PA4
# define SS 3 // PA7
#endif
#if defined (ARDUINO) && !defined (__arm__)
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) || defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
#define RF24_TINY
#else
// #include <SPI.h>
#endif
#endif
#if defined(RF24_TINY)
#include <stdio.h>
#include <Arduino.h>
#include <avr/pgmspace.h>
#define SPI_CLOCK_DIV4 0x00
#define SPI_CLOCK_DIV16 0x01
#define SPI_CLOCK_DIV64 0x02
#define SPI_CLOCK_DIV128 0x03
#define SPI_CLOCK_DIV2 0x04
#define SPI_CLOCK_DIV8 0x05
#define SPI_CLOCK_DIV32 0x06
//#define SPI_CLOCK_DIV64 0x07
#define SPI_MODE0 0x00
#define SPI_MODE1 0x04
#define SPI_MODE2 0x08
#define SPI_MODE3 0x0C
#define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
#define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
#define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
class SPIClass { public: static byte transfer(byte _data);
// SPI Configuration methods
inline static void attachInterrupt(); inline static void detachInterrupt(); // Default
static void begin(); // Default
static void end();
// static void setBitOrder(uint8_t);
// static void setDataMode(uint8_t);
// static void setClockDivider(uint8_t);
}; extern SPIClass SPI;
#endif /* RF24_TINY */
#if defined(RF24_TINY)
void SPIClass::begin() { digitalWrite(SS, HIGH); pinMode(USCK, OUTPUT); pinMode(DO, OUTPUT); pinMode(SS, OUTPUT); pinMode(DI, INPUT); USICR = _BV(USIWM0); }
byte SPIClass::transfer(byte b) { USIDR = b; USISR = _BV(USIOIF); do USICR = _BV(USIWM0) | _BV(USICS1) | _BV(USICLK) | _BV(USITC); while ((USISR & _BV(USIOIF)) == 0); return USIDR; }
void SPIClass::end() {}
#endif /* RF24_TINY */
/****************************************************************************/ uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ uint8_t csn_pin; /**< SPI Chip select */ uint8_t csnHighSettle = 255; uint8_t csnLowSettle = 255; /****************************************************************************/ void ce(bool level) { if (ce_pin != csn_pin) digitalWrite(ce_pin,level); }
/****************************************************************************/ void setCsnHighSettle(uint8_t level) { csnHighSettle = level; }
/****************************************************************************/ void setCsnLowSettle(uint8_t level) { csnLowSettle = level; } /****************************************************************************/ void csn(bool mode) { if (ce_pin != csn_pin) { digitalWrite(csn_pin,mode); } else { if (mode == HIGH) { PORTB |= (1<<PINB2); // SCK->CSN HIGH
delayMicroseconds(csnHighSettle); // allow csn to settle
} else { PORTB &= ~(1<<PINB2); // SCK->CSN LOW
delayMicroseconds(csnLowSettle); // allow csn to settle
} } }
/****************************************************************************/ uint8_t read_register(uint8_t reg) { csn(LOW); SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); uint8_t result = SPI.transfer(0xff); csn(HIGH); return result; }
/****************************************************************************/ uint8_t write_register2(uint8_t reg, uint8_t value) { uint8_t status;
csn(LOW); status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); SPI.transfer(value); csn(HIGH); return status; }
/****************************************************************************/ #if defined(RF24_TINY)
#define CE_PIN 3
#define CSN_PIN 3
#else
#define CE_PIN 7
#define CSN_PIN 8
#endif
#define MAX_HIGH 100
#define MAX_LOW 100
#define MINIMAL 8
void setup(void) { uint8_t status;
// start serial port and SPI
Serial.begin(9600); SPI.begin();
// configure ce and scn as output when used
ce_pin = CE_PIN; csn_pin = CSN_PIN;
setCsnHighSettle(MAX_HIGH); setCsnLowSettle(MAX_LOW); // csn is used in SPI transfers. Set to LOW at start and HIGH after transfer. Set to HIGH to reflect no transfer active
// SPI command are accepted in Power Down state.
// ce represent PRX (LOW) or PTX (HIGH) mode apart from register settings. Start in PRX mode.
ce(LOW); csn(HIGH);
// nRF24L01 goes from to Power Down state 100ms after Power on Reset ( Vdd > 1.9V) or when PWR_UP is 0 in config register
// Goto Power Down state (Powerup or force) and set in transmit mode
write_register2(CONFIG, read_register(CONFIG) & ~_BV(PWR_UP) & ~_BV(PRIM_RX)); delay(100); // Goto Standby-I
// Technically we require 4.5ms Tpd2stby+ 14us as a worst case. We'll just call it 5ms for good measure.
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
write_register2(CONFIG, read_register(CONFIG) | _BV(PWR_UP)); delay(5) ;
// Goto Standby-II
ce(HIGH); Serial.print("Scanning for optimal setting time for scn"); }
void loop(void) { uint8_t status; uint8_t i; uint8_t j; uint8_t k; bool success = true; uint8_t csnHigh = MAX_HIGH; uint8_t csnLow = MAX_LOW; uint8_t bottom_success; bool bottom_found; uint8_t value[] = {5,10}; uint8_t limit[] = {MAX_HIGH,MAX_LOW}; uint8_t advice[] = {MAX_HIGH,MAX_LOW}; // check max values give correct behavior
for (k=0;k<2;k++) { bottom_found = false; bottom_success = 0; while(bottom_success < 255) { setCsnHighSettle(limit[0]); setCsnLowSettle(limit[1]); // check current values
i = 0; while(i<255 & success) { for (j=0;j<2;j++) { write_register2(EN_AA, value[j]); status = read_register(EN_AA); if (value[j] != status) { success = false; } } i++; } // process result of current values
if (!success) { Serial.print("Settle NOK. csnHigh="); Serial.print(limit[0],DEC); Serial.print(" csnLow="); Serial.println(limit[1],DEC); limit[k]++; bottom_found = true; bottom_success = 0; success = true; } else { Serial.print("Settle OK. csnHigh="); Serial.print(limit[0],DEC); Serial.print(" csnLow="); Serial.println(limit[1],DEC); if (!bottom_found) { limit[k]--; if (limit[k] == MINIMAL) { bottom_found = true; bottom_success = 0; success = true; } } else { bottom_success++; } } } Serial.print("Settle value found for "); if (k == 0) { Serial.print("csnHigh: "); } else { Serial.print("csnLow: "); } Serial.println(limit[k],DEC); advice[k] = limit[k] + (limit[k] / 10); limit[k] = 100; } Serial.print("Adviced Settle times are: csnHigh="); Serial.print(advice[0],DEC); Serial.print(" csnLow="); Serial.println(advice[1],DEC); while (true) { ; } }
|