|
|
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */
#include "nRF24L01.h"
#include "RF24_config.h"
#include "RF24.h"
/****************************************************************************/
void RF24::csn(bool mode) {
#if defined (RF24_TINY)
if (ce_pin != csn_pin) { digitalWrite(csn_pin,mode); } else { if (mode == HIGH) { PORTB |= (1<<PINB2); // SCK->CSN HIGH
delayMicroseconds(100); // allow csn to settle.
} else { PORTB &= ~(1<<PINB2); // SCK->CSN LOW
delayMicroseconds(11); // allow csn to settle
} } // Return, CSN toggle complete
return; #elif defined(ARDUINO) && !defined (RF24_SPI_TRANSACTIONS)
// Minimum ideal SPI bus speed is 2x data rate
// If we assume 2Mbs data rate and 16Mhz clock, a
// divider of 4 is the minimum we want.
// CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
#if !defined (SOFTSPI)
_SPI.setBitOrder(MSBFIRST); _SPI.setDataMode(SPI_MODE0); #if !defined(F_CPU) || F_CPU < 20000000
_SPI.setClockDivider(SPI_CLOCK_DIV2); #elif F_CPU < 40000000
_SPI.setClockDivider(SPI_CLOCK_DIV4); #elif F_CPU < 80000000
_SPI.setClockDivider(SPI_CLOCK_DIV8); #elif F_CPU < 160000000
_SPI.setClockDivider(SPI_CLOCK_DIV16); #elif F_CPU < 320000000
_SPI.setClockDivider(SPI_CLOCK_DIV32); #elif F_CPU < 640000000
_SPI.setClockDivider(SPI_CLOCK_DIV64); #elif F_CPU < 1280000000
_SPI.setClockDivider(SPI_CLOCK_DIV128); #else
#error "Unsupported CPU frequency. Please set correct SPI divider."
#endif
#endif
#elif defined (RF24_RPi)
if(!mode) _SPI.chipSelect(csn_pin); #endif
#if !defined (RF24_LINUX)
digitalWrite(csn_pin,mode); delayMicroseconds(csDelay); #endif
}
/****************************************************************************/
void RF24::ce(bool level) { //Allow for 3-pin use on ATTiny
if (ce_pin != csn_pin) digitalWrite(ce_pin,level); }
/****************************************************************************/
inline void RF24::beginTransaction() { #if defined (RF24_SPI_TRANSACTIONS)
_SPI.beginTransaction(SPISettings(RF24_SPI_SPEED, MSBFIRST, SPI_MODE0)); #endif
csn(LOW); }
/****************************************************************************/
inline void RF24::endTransaction() { csn(HIGH); #if defined (RF24_SPI_TRANSACTIONS)
_SPI.endTransaction(); #endif
}
/****************************************************************************/
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { uint8_t status;
#if defined (RF24_LINUX)
beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low
uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size = len + 1; // Add register value to transmit buffer
*ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) );
while (len--){ *ptx++ = RF24_NOP; } // Dummy operation, just for reading
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); status = *prx++; // status is 1st byte of receive buffer
// decrement before to skip status byte
while ( --size ){ *buf++ = *prx++; } endTransaction(); //unlocks mutex and setting csn high
#else
beginTransaction(); status = _SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ){ *buf++ = _SPI.transfer(0xff); } endTransaction();
#endif
return status; }
/****************************************************************************/
uint8_t RF24::read_register(uint8_t reg) { uint8_t result; #if defined (RF24_LINUX)
beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; *ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) ); *ptx++ = RF24_NOP ; // Dummy operation, just for reading
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); result = *++prx; // result is 2nd byte of receive buffer
endTransaction(); #else
beginTransaction(); _SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); result = _SPI.transfer(0xff); endTransaction();
#endif
return result; }
/****************************************************************************/
uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { uint8_t status;
#if defined (RF24_LINUX)
beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size = len + 1; // Add register value to transmit buffer
*ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) *ptx++ = *buf++; _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); status = *prx; // status is 1st byte of receive buffer
endTransaction(); #else
beginTransaction(); status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); while ( len-- ) _SPI.transfer(*buf++); endTransaction();
#endif
return status; }
/****************************************************************************/
uint8_t RF24::write_register(uint8_t reg, uint8_t value) { uint8_t status;
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
#if defined (RF24_LINUX)
beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; *ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) ); *ptx = value ; _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); status = *prx++; // status is 1st byte of receive buffer
endTransaction(); #else
beginTransaction(); status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); _SPI.transfer(value); endTransaction();
#endif
return status; }
/****************************************************************************/
uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType) { uint8_t status; const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
data_len = rf24_min(data_len, payload_size); uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); ); #if defined (RF24_LINUX)
beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size; size = data_len + blank_len + 1 ; // Add register value to transmit buffer
*ptx++ = writeType; while ( data_len-- ) *ptx++ = *current++; while ( blank_len-- ) *ptx++ = 0; _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); status = *prx; // status is 1st byte of receive buffer
endTransaction();
#else
beginTransaction(); status = _SPI.transfer( writeType ); while ( data_len-- ) { _SPI.transfer(*current++); } while ( blank_len-- ) { _SPI.transfer(0); } endTransaction();
#endif
return status; }
/****************************************************************************/
uint8_t RF24::read_payload(void* buf, uint8_t data_len) { uint8_t status; uint8_t* current = reinterpret_cast<uint8_t*>(buf);
if(data_len > payload_size) data_len = payload_size; uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); ); #if defined (RF24_LINUX)
beginTransaction(); uint8_t * prx = spi_rxbuff; uint8_t * ptx = spi_txbuff; uint8_t size; size = data_len + blank_len + 1; // Add register value to transmit buffer
*ptx++ = R_RX_PAYLOAD; while(--size) *ptx++ = RF24_NOP; size = data_len + blank_len + 1; // Size has been lost during while, re affect
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size); status = *prx++; // 1st byte is status
if (data_len > 0) { while ( --data_len ) // Decrement before to skip 1st status byte
*current++ = *prx++; *current = *prx; } endTransaction(); #else
beginTransaction(); status = _SPI.transfer( R_RX_PAYLOAD ); while ( data_len-- ) { *current++ = _SPI.transfer(0xFF); } while ( blank_len-- ) { _SPI.transfer(0xff); } endTransaction();
#endif
return status; }
/****************************************************************************/
uint8_t RF24::flush_rx(void) { return spiTrans( FLUSH_RX ); }
/****************************************************************************/
uint8_t RF24::flush_tx(void) { return spiTrans( FLUSH_TX ); }
/****************************************************************************/
uint8_t RF24::spiTrans(uint8_t cmd){
uint8_t status; beginTransaction(); status = _SPI.transfer( cmd ); endTransaction(); return status; }
/****************************************************************************/
uint8_t RF24::get_status(void) { return spiTrans(RF24_NOP); }
/****************************************************************************/ #if !defined (MINIMAL)
void RF24::print_status(uint8_t status) { printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), status, (status & _BV(RX_DR))?1:0, (status & _BV(TX_DS))?1:0, (status & _BV(MAX_RT))?1:0, ((status >> RX_P_NO) & 0x07), (status & _BV(TX_FULL))?1:0 ); }
/****************************************************************************/
void RF24::print_observe_tx(uint8_t value) { printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), value, (value >> PLOS_CNT) & 0x0F, (value >> ARC_CNT) & 0x0F ); }
/****************************************************************************/
void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) { //char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
//printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab);
#if defined (RF24_LINUX)
printf("%s\t =", name); #else
printf_P(PSTR(PRIPSTR"\t ="),name); #endif
while (qty--) printf_P(PSTR(" 0x%02x"),read_register(reg++)); printf_P(PSTR("\r\n")); }
/****************************************************************************/
void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) {
#if defined (RF24_LINUX)
printf("%s\t =",name); #else
printf_P(PSTR(PRIPSTR"\t ="),name); #endif
while (qty--) { uint8_t buffer[addr_width]; read_register(reg++,buffer,sizeof buffer);
printf_P(PSTR(" 0x")); uint8_t* bufptr = buffer + sizeof buffer; while( --bufptr >= buffer ) printf_P(PSTR("%02x"),*bufptr); }
printf_P(PSTR("\r\n")); } #endif
/****************************************************************************/
RF24::RF24(uint16_t _cepin, uint16_t _cspin): ce_pin(_cepin), csn_pin(_cspin), p_variant(false), payload_size(32), dynamic_payloads_enabled(false), addr_width(5),csDelay(5)//,pipe0_reading_address(0)
{ pipe0_reading_address[0]=0; }
/****************************************************************************/
#if defined (RF24_LINUX) && !defined (MRAA)//RPi constructor
RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed): ce_pin(_cepin),csn_pin(_cspin),spi_speed(_spi_speed),p_variant(false), payload_size(32), dynamic_payloads_enabled(false),addr_width(5)//,pipe0_reading_address(0)
{ pipe0_reading_address[0]=0; } #endif
/****************************************************************************/
void RF24::setChannel(uint8_t channel) { const uint8_t max_channel = 125; write_register(RF_CH,rf24_min(channel,max_channel)); }
uint8_t RF24::getChannel() { return read_register(RF_CH); } /****************************************************************************/
void RF24::setPayloadSize(uint8_t size) { payload_size = rf24_min(size,32); }
/****************************************************************************/
uint8_t RF24::getPayloadSize(void) { return payload_size; }
/****************************************************************************/
#if !defined (MINIMAL)
static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS"; static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS"; static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS"; static const char * const rf24_datarate_e_str_P[] PROGMEM = { rf24_datarate_e_str_0, rf24_datarate_e_str_1, rf24_datarate_e_str_2, }; static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01"; static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+"; static const char * const rf24_model_e_str_P[] PROGMEM = { rf24_model_e_str_0, rf24_model_e_str_1, }; static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled"; static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits"; static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ; static const char * const rf24_crclength_e_str_P[] PROGMEM = { rf24_crclength_e_str_0, rf24_crclength_e_str_1, rf24_crclength_e_str_2, }; static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN"; static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW"; static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH"; static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX"; static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = { rf24_pa_dbm_e_str_0, rf24_pa_dbm_e_str_1, rf24_pa_dbm_e_str_2, rf24_pa_dbm_e_str_3, };
#if defined (RF24_LINUX)
static const char rf24_csn_e_str_0[] = "CE0 (PI Hardware Driven)"; static const char rf24_csn_e_str_1[] = "CE1 (PI Hardware Driven)"; static const char rf24_csn_e_str_2[] = "CE2 (PI Hardware Driven)"; static const char rf24_csn_e_str_3[] = "Custom GPIO Software Driven"; static const char * const rf24_csn_e_str_P[] = { rf24_csn_e_str_0, rf24_csn_e_str_1, rf24_csn_e_str_2, rf24_csn_e_str_3, }; #endif
void RF24::printDetails(void) {
#if defined (RF24_RPi)
printf("================ SPI Configuration ================\n" ); if (csn_pin < BCM2835_SPI_CS_NONE ){ printf("CSN Pin \t = %s\n",rf24_csn_e_str_P[csn_pin]); }else{ printf("CSN Pin \t = Custom GPIO%d%s\n", csn_pin, csn_pin==RPI_V2_GPIO_P1_26 ? " (CE1) Software Driven" : "" ); } printf("CE Pin \t = Custom GPIO%d\n", ce_pin ); printf("Clock Speed\t = " ); switch (spi_speed) { case BCM2835_SPI_SPEED_64MHZ : printf("64 Mhz"); break ; case BCM2835_SPI_SPEED_32MHZ : printf("32 Mhz"); break ; case BCM2835_SPI_SPEED_16MHZ : printf("16 Mhz"); break ; case BCM2835_SPI_SPEED_8MHZ : printf("8 Mhz"); break ; case BCM2835_SPI_SPEED_4MHZ : printf("4 Mhz"); break ; case BCM2835_SPI_SPEED_2MHZ : printf("2 Mhz"); break ; case BCM2835_SPI_SPEED_1MHZ : printf("1 Mhz"); break ; case BCM2835_SPI_SPEED_512KHZ: printf("512 KHz"); break ; case BCM2835_SPI_SPEED_256KHZ: printf("256 KHz"); break ; case BCM2835_SPI_SPEED_128KHZ: printf("128 KHz"); break ; case BCM2835_SPI_SPEED_64KHZ : printf("64 KHz"); break ; case BCM2835_SPI_SPEED_32KHZ : printf("32 KHz"); break ; case BCM2835_SPI_SPEED_16KHZ : printf("16 KHz"); break ; case BCM2835_SPI_SPEED_8KHZ : printf("8 KHz"); break ; default : printf("8 Mhz"); break ; } printf("\n================ NRF Configuration ================\n"); #endif //Linux
print_status(get_status());
print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2); print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4); print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6); print_byte_register(PSTR("EN_AA\t"),EN_AA); print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR); print_byte_register(PSTR("RF_CH\t"),RF_CH); print_byte_register(PSTR("RF_SETUP"),RF_SETUP); print_byte_register(PSTR("CONFIG\t"),NRF_CONFIG); print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()])); printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_model_e_str_P[isPVariant()])); printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()])); printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()]));
}
#endif
/****************************************************************************/
bool RF24::begin(void) {
uint8_t setup=0;
#if defined (RF24_LINUX)
#if defined (MRAA)
GPIO(); gpio.begin(ce_pin,csn_pin); #endif
#ifdef RF24_RPi
switch(csn_pin){ //Ensure valid hardware CS pin
case 0: break; case 1: break; // Allow BCM2835 enums for RPi
case 8: csn_pin = 0; break; case 7: csn_pin = 1; break; default: csn_pin = 0; break; } #endif
_SPI.begin(csn_pin);
pinMode(ce_pin,OUTPUT); ce(LOW);
delay(100); #elif defined(LITTLEWIRE)
pinMode(csn_pin,OUTPUT); _SPI.begin(); csn(HIGH); #elif defined(XMEGA_D3)
if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT); _SPI.begin(csn_pin); ce(LOW); csn(HIGH); delay(200); #else
// Initialize pins
if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT); #if ! defined(LITTLEWIRE)
if (ce_pin != csn_pin) #endif
pinMode(csn_pin,OUTPUT); _SPI.begin(); ce(LOW); csn(HIGH); #if defined (__ARDUINO_X86__)
delay(100); #endif
#endif //Linux
// Must allow the radio time to settle else configuration bits will not necessarily stick.
// This is actually only required following power up but some settling time also appears to
// be required after resets too. For full coverage, we'll always assume the worst.
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
delay( 5 ) ;
// Reset NRF_CONFIG and enable 16-bit CRC.
write_register( NRF_CONFIG, 0x0C ) ;
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
// sizes must never be used. See documentation for a more complete explanation.
setRetries(5,15);
// Reset value is MAX
//setPALevel( RF24_PA_MAX ) ;
// check for connected module and if this is a p nRF24l01 variant
//
if( setDataRate( RF24_250KBPS ) ) { p_variant = true ; } setup = read_register(RF_SETUP); /*if( setup == 0b00001110 ) // register default for nRF24L01P
{ p_variant = true ; }*/ // Then set the data rate to the slowest (and most reliable) speed supported by all
// hardware.
setDataRate( RF24_1MBPS ) ;
// Initialize CRC and request 2-byte (16bit) CRC
//setCRCLength( RF24_CRC_16 ) ;
// Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
toggle_features(); write_register(FEATURE,0 ); write_register(DYNPD,0); dynamic_payloads_enabled = false;
// Reset current status
// Notice reset and flush is the last thing we do
write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Set up default configuration. Callers can always change it later.
// This channel should be universally safe and not bleed over into adjacent
// spectrum.
setChannel(76);
// Flush buffers
flush_rx(); flush_tx();
powerUp(); //Power up by default when begin() is called
// Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
// PTX should use only 22uA of power
write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) );
// if setup is 0 or ff then there was no response from module
return ( setup != 0 && setup != 0xff ); }
/****************************************************************************/
bool RF24::isChipConnected() { uint8_t setup = read_register(SETUP_AW); if(setup >= 1 && setup <= 3) { return true; }
return false; }
/****************************************************************************/
void RF24::startListening(void) { #if !defined (RF24_TINY) && ! defined(LITTLEWIRE)
powerUp(); #endif
write_register(NRF_CONFIG, read_register(NRF_CONFIG) | _BV(PRIM_RX)); write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); ce(HIGH); // Restore the pipe0 adddress, if exists
if (pipe0_reading_address[0] > 0){ write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); }else{ closeReadingPipe(0); }
// Flush buffers
//flush_rx();
if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ flush_tx(); }
// Go!
//delayMicroseconds(100);
}
/****************************************************************************/ static const uint8_t child_pipe_enable[] PROGMEM = { ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 };
void RF24::stopListening(void) { ce(LOW);
delayMicroseconds(txDelay); if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ delayMicroseconds(txDelay); //200
flush_tx(); } //flush_rx();
write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) ); #if defined (RF24_TINY) || defined (LITTLEWIRE)
// for 3 pins solution TX mode is only left with additonal powerDown/powerUp cycle
if (ce_pin == csn_pin) { powerDown(); powerUp(); } #endif
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
//delayMicroseconds(100);
}
/****************************************************************************/
void RF24::powerDown(void) { ce(LOW); // Guarantee CE is low on powerDown
write_register(NRF_CONFIG,read_register(NRF_CONFIG) & ~_BV(PWR_UP)); }
/****************************************************************************/
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void RF24::powerUp(void) { uint8_t cfg = read_register(NRF_CONFIG);
// if not powered up then power up and wait for the radio to initialize
if (!(cfg & _BV(PWR_UP))){ write_register(NRF_CONFIG, cfg | _BV(PWR_UP));
// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
delay(5); } }
/******************************************************************/ #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
void RF24::errNotify(){ #if defined (SERIAL_DEBUG) || defined (RF24_LINUX)
printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); #endif
#if defined (FAILURE_HANDLING)
failureDetected = 1; #else
delay(5000); #endif
} #endif
/******************************************************************/
//Similar to the previous write, clears the interrupt flags
bool RF24::write( const void* buf, uint8_t len, const bool multicast ) { //Start Writing
startFastWrite(buf,len,multicast);
//Wait until complete or failed
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
uint32_t timer = millis(); #endif
while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) { #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
if(millis() - timer > 95){ errNotify(); #if defined (FAILURE_HANDLING)
return 0; #else
delay(100); #endif
} #endif
} ce(LOW);
uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
//Max retries exceeded
if( status & _BV(MAX_RT)){ flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
return 0; } //TX OK 1 or 0
return 1; }
bool RF24::write( const void* buf, uint8_t len ){ return write(buf,len,0); } /****************************************************************************/
//For general use, the interrupt flags are not important to clear
bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout ) { //Block until the FIFO is NOT full.
//Keep track of the MAX retries and set auto-retry if seeing failures
//This way the FIFO will fill up and allow blocking until packets go through
//The radio will auto-clear everything in the FIFO as long as CE remains high
uint32_t timer = millis(); //Get the time that the payload transmission started
while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
if( get_status() & _BV(MAX_RT)){ //If MAX Retries have been reached
reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag
if(millis() - timer > timeout){ return 0; } //If this payload has exceeded the user-defined timeout, exit and return 0
} #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
if(millis() - timer > (timeout+95) ){ errNotify(); #if defined (FAILURE_HANDLING)
return 0; #endif
} #endif
}
//Start Writing
startFastWrite(buf,len,0); //Write the payload if a buffer is clear
return 1; //Return 1 to indicate successful transmission
}
/****************************************************************************/
void RF24::reUseTX(){ write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
spiTrans( REUSE_TX_PL ); ce(LOW); //Re-Transfer packet
ce(HIGH); }
/****************************************************************************/
bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast ) { //Block until the FIFO is NOT full.
//Keep track of the MAX retries and set auto-retry if seeing failures
//Return 0 so the user can control the retrys and set a timer or failure counter if required
//The radio will auto-clear everything in the FIFO as long as CE remains high
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
uint32_t timer = millis(); #endif
while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
if( get_status() & _BV(MAX_RT)){ //reUseTX(); //Set re-transmit
write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
return 0; //Return 0. The previous payload has been retransmitted
//From the user perspective, if you get a 0, just keep trying to send the same payload
} #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
if(millis() - timer > 95 ){ errNotify(); #if defined (FAILURE_HANDLING)
return 0; #endif
} #endif
} //Start Writing
startFastWrite(buf,len,multicast);
return 1; }
bool RF24::writeFast( const void* buf, uint8_t len ){ return writeFast(buf,len,0); }
/****************************************************************************/
//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
//Otherwise we enter Standby-II mode, which is still faster than standby mode
//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20
//write_payload( buf,len);
write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; if(startTx){ ce(HIGH); }
}
/****************************************************************************/
//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
//Allows the library to pass all tests
void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){
// Send the payload
//write_payload( buf, len );
write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; ce(HIGH); #if !defined(F_CPU) || F_CPU > 20000000
delayMicroseconds(10); #endif
ce(LOW);
}
/****************************************************************************/
bool RF24::rxFifoFull(){ return read_register(FIFO_STATUS) & _BV(RX_FULL); } /****************************************************************************/
bool RF24::txStandBy(){
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
uint32_t timeout = millis(); #endif
while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ if( get_status() & _BV(MAX_RT)){ write_register(NRF_STATUS,_BV(MAX_RT) ); ce(LOW); flush_tx(); //Non blocking, flush the data
return 0; } #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
if( millis() - timeout > 95){ errNotify(); #if defined (FAILURE_HANDLING)
return 0; #endif
} #endif
}
ce(LOW); //Set STANDBY-I mode
return 1; }
/****************************************************************************/
bool RF24::txStandBy(uint32_t timeout, bool startTx){
if(startTx){ stopListening(); ce(HIGH); } uint32_t start = millis();
while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ if( get_status() & _BV(MAX_RT)){ write_register(NRF_STATUS,_BV(MAX_RT) ); ce(LOW); //Set re-transmit
ce(HIGH); if(millis() - start >= timeout){ ce(LOW); flush_tx(); return 0; } } #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
if( millis() - start > (timeout+95)){ errNotify(); #if defined (FAILURE_HANDLING)
return 0; #endif
} #endif
}
ce(LOW); //Set STANDBY-I mode
return 1;
}
/****************************************************************************/
void RF24::maskIRQ(bool tx, bool fail, bool rx){
uint8_t config = read_register(NRF_CONFIG); /* clear the interrupt flags */ config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); /* set the specified interrupt flags */ config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; write_register(NRF_CONFIG, config); }
/****************************************************************************/
uint8_t RF24::getDynamicPayloadSize(void) { uint8_t result = 0;
#if defined (RF24_LINUX)
spi_txbuff[0] = R_RX_PL_WID; spi_rxbuff[1] = 0xff; beginTransaction(); _SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2); result = spi_rxbuff[1]; endTransaction(); #else
beginTransaction(); _SPI.transfer( R_RX_PL_WID ); result = _SPI.transfer(0xff); endTransaction(); #endif
if(result > 32) { flush_rx(); delay(2); return 0; } return result; }
/****************************************************************************/
bool RF24::available(void) { return available(NULL); }
/****************************************************************************/
bool RF24::available(uint8_t* pipe_num) { if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )){
// If the caller wants the pipe number, include that
if ( pipe_num ){ uint8_t status = get_status(); *pipe_num = ( status >> RX_P_NO ) & 0x07; } return 1; }
return 0;
}
/****************************************************************************/
void RF24::read( void* buf, uint8_t len ){
// Fetch the payload
read_payload( buf, len );
//Clear the two possible interrupt flags with one command
write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
}
/****************************************************************************/
void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready) { // Read the status & reset the status in one easy call
// Or is that such a good idea?
uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Report to the user what happened
tx_ok = status & _BV(TX_DS); tx_fail = status & _BV(MAX_RT); rx_ready = status & _BV(RX_DR); }
/****************************************************************************/
void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width); write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width); //const uint8_t max_payload_size = 32;
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
write_register(RX_PW_P0,payload_size); }
/****************************************************************************/ void RF24::openWritingPipe(const uint8_t *address) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0,address, addr_width); write_register(TX_ADDR, address, addr_width);
//const uint8_t max_payload_size = 32;
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
write_register(RX_PW_P0,payload_size); }
/****************************************************************************/ static const uint8_t child_pipe[] PROGMEM = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; static const uint8_t child_payload_size[] PROGMEM = { RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 };
void RF24::openReadingPipe(uint8_t child, uint64_t address) { // If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0){ memcpy(pipe0_reading_address,&address,addr_width); }
if (child <= 6) { // For pipes 2-5, only write the LSB
if ( child < 2 ) write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width); else write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); } }
/****************************************************************************/ void RF24::setAddressWidth(uint8_t a_width){
if(a_width -= 2){ write_register(SETUP_AW,a_width%4); addr_width = (a_width%4) + 2; }else{ write_register(SETUP_AW,0); addr_width = 2; }
}
/****************************************************************************/
void RF24::openReadingPipe(uint8_t child, const uint8_t *address) { // If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0){ memcpy(pipe0_reading_address,address,addr_width); } if (child <= 6) { // For pipes 2-5, only write the LSB
if ( child < 2 ){ write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); }else{ write_register(pgm_read_byte(&child_pipe[child]), address, 1); } write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
} }
/****************************************************************************/
void RF24::closeReadingPipe( uint8_t pipe ) { write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); }
/****************************************************************************/
void RF24::toggle_features(void) { beginTransaction(); _SPI.transfer( ACTIVATE ); _SPI.transfer( 0x73 ); endTransaction(); }
/****************************************************************************/
void RF24::enableDynamicPayloads(void) { // Enable dynamic payload throughout the system
//toggle_features();
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
// Enable dynamic payload on all pipes
//
// Not sure the use case of only having dynamic payload on certain
// pipes, so the library does not support it.
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
dynamic_payloads_enabled = true; }
/****************************************************************************/ void RF24::disableDynamicPayloads(void) { // Disables dynamic payload throughout the system. Also disables Ack Payloads
//toggle_features();
write_register(FEATURE, 0);
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
// Disable dynamic payload on all pipes
//
// Not sure the use case of only having dynamic payload on certain
// pipes, so the library does not support it.
write_register(DYNPD, 0);
dynamic_payloads_enabled = false; }
/****************************************************************************/
void RF24::enableAckPayload(void) { //
// enable ack payload and dynamic payload features
//
//toggle_features();
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
//
// Enable dynamic payload on pipes 0 & 1
//
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); dynamic_payloads_enabled = true; }
/****************************************************************************/
void RF24::enableDynamicAck(void){ //
// enable dynamic ack features
//
//toggle_features();
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
}
/****************************************************************************/
void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
uint8_t data_len = rf24_min(len,32);
#if defined (RF24_LINUX)
beginTransaction(); uint8_t * ptx = spi_txbuff; uint8_t size = data_len + 1 ; // Add register value to transmit buffer
*ptx++ = W_ACK_PAYLOAD | ( pipe & 0x07 ); while ( data_len-- ){ *ptx++ = *current++; } _SPI.transfern( (char *) spi_txbuff, size); endTransaction(); #else
beginTransaction(); _SPI.transfer(W_ACK_PAYLOAD | ( pipe & 0x07 ) );
while ( data_len-- ) _SPI.transfer(*current++); endTransaction(); #endif
}
/****************************************************************************/
bool RF24::isAckPayloadAvailable(void) { return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY)); }
/****************************************************************************/
bool RF24::isPVariant(void) { return p_variant ; }
/****************************************************************************/
void RF24::setAutoAck(bool enable) { if ( enable ) write_register(EN_AA, 0x3F); else write_register(EN_AA, 0); }
/****************************************************************************/
void RF24::setAutoAck( uint8_t pipe, bool enable ) { if ( pipe <= 6 ) { uint8_t en_aa = read_register( EN_AA ) ; if( enable ) { en_aa |= _BV(pipe) ; } else { en_aa &= ~_BV(pipe) ; } write_register( EN_AA, en_aa ) ; } }
/****************************************************************************/
bool RF24::testCarrier(void) { return ( read_register(CD) & 1 ); }
/****************************************************************************/
bool RF24::testRPD(void) { return ( read_register(RPD) & 1 ) ; }
/****************************************************************************/
void RF24::setPALevel(uint8_t level) {
uint8_t setup = read_register(RF_SETUP) & 0xF8;
if(level > 3){ // If invalid level, go to max PA
level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
}else{ level = (level << 1) + 1; // Else set level as requested
}
write_register( RF_SETUP, setup |= level ) ; // Write it to the chip
}
/****************************************************************************/
uint8_t RF24::getPALevel(void) {
return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ; }
/****************************************************************************/
bool RF24::setDataRate(rf24_datarate_e speed) { bool result = false; uint8_t setup = read_register(RF_SETUP) ;
// HIGH and LOW '00' is 1Mbs - our default
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; #if !defined(F_CPU) || F_CPU > 20000000
txDelay=250; #else //16Mhz Arduino
txDelay=85; #endif
if( speed == RF24_250KBPS ) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
// Making it '10'.
setup |= _BV( RF_DR_LOW ) ; #if !defined(F_CPU) || F_CPU > 20000000
txDelay=450; #else //16Mhz Arduino
txDelay=155; #endif
} else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
// Making it '01'
if ( speed == RF24_2MBPS ) { setup |= _BV(RF_DR_HIGH); #if !defined(F_CPU) || F_CPU > 20000000
txDelay=190; #else //16Mhz Arduino
txDelay=65; #endif
} } write_register(RF_SETUP,setup);
// Verify our result
if ( read_register(RF_SETUP) == setup ) { result = true; } return result; }
/****************************************************************************/
rf24_datarate_e RF24::getDataRate( void ) { rf24_datarate_e result ; uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
// switch uses RAM (evil!)
// Order matters in our case below
if ( dr == _BV(RF_DR_LOW) ) { // '10' = 250KBPS
result = RF24_250KBPS ; } else if ( dr == _BV(RF_DR_HIGH) ) { // '01' = 2MBPS
result = RF24_2MBPS ; } else { // '00' = 1MBPS
result = RF24_1MBPS ; } return result ; }
/****************************************************************************/
void RF24::setCRCLength(rf24_crclength_e length) { uint8_t config = read_register(NRF_CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
// switch uses RAM (evil!)
if ( length == RF24_CRC_DISABLED ) { // Do nothing, we turned it off above.
} else if ( length == RF24_CRC_8 ) { config |= _BV(EN_CRC); } else { config |= _BV(EN_CRC); config |= _BV( CRCO ); } write_register( NRF_CONFIG, config ) ; }
/****************************************************************************/
rf24_crclength_e RF24::getCRCLength(void) { rf24_crclength_e result = RF24_CRC_DISABLED; uint8_t config = read_register(NRF_CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ; uint8_t AA = read_register(EN_AA); if ( config & _BV(EN_CRC ) || AA) { if ( config & _BV(CRCO) ) result = RF24_CRC_16; else result = RF24_CRC_8; }
return result; }
/****************************************************************************/
void RF24::disableCRC( void ) { uint8_t disable = read_register(NRF_CONFIG) & ~_BV(EN_CRC) ; write_register( NRF_CONFIG, disable ) ; }
/****************************************************************************/ void RF24::setRetries(uint8_t delay, uint8_t count) { write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC); }
//ATTiny support code pulled in from https://github.com/jscrane/RF24
#if defined(RF24_TINY)
void SPIClass::begin() { // set USCK and DO for output
// set DI for input
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
DDRB |= (1 << PB2) | (1 << PB1); DDRB &= ~(1 << PB0); #elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
DDRA |= (1 << PA4) | (1 << PA5); DDRA &= ~(1 << PA6); #elif defined(__AVR_ATtiny2313__) || defined(__AVR_ATtiny4313__)
DDRB |= (1 << PB7) | (1 << PB6); DDRB &= ~(1 << PB5); #elif defined(__AVR_ATtiny861__)
DDRB |= (1 << PB2) | (1 << PB1); DDRB &= ~(1 << PB0); #endif
USICR = _BV(USIWM0);
}
byte SPIClass::transfer(byte b) {
USIDR = b; USISR = _BV(USIOIF); do USICR = _BV(USIWM0) | _BV(USICS1) | _BV(USICLK) | _BV(USITC); while ((USISR & _BV(USIOIF)) == 0); return USIDR;
}
void SPIClass::end() {} void SPIClass::setDataMode(uint8_t mode){} void SPIClass::setBitOrder(uint8_t bitOrder){} void SPIClass::setClockDivider(uint8_t rate){}
#endif
|