|
|
@ -4,38 +4,39 @@ |
|
|
|
#include <math.h> |
|
|
|
|
|
|
|
|
|
|
|
double multi( double ein1, double ein2) { |
|
|
|
return (ein1 * ein2); |
|
|
|
|
|
|
|
double multi( double num1, double num2) { |
|
|
|
return (num1 * num2); |
|
|
|
} |
|
|
|
|
|
|
|
double square(double x) { |
|
|
|
return x * x; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_three_integers(int a, int b, int c) { |
|
|
|
int multi_three_integers(int a, int b, int c) { |
|
|
|
return a * b * c; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_left_shift(int a, int b) { |
|
|
|
int multi_left_shift(int a, int b) { |
|
|
|
return a << b; |
|
|
|
} |
|
|
|
int multiply_right_shift(int a, int b) { |
|
|
|
int multi_right_shift(int a, int b) { |
|
|
|
return a >> b; |
|
|
|
} |
|
|
|
int multiply_by_ten(int a) { |
|
|
|
return a * 10; |
|
|
|
int multi_by_five(int a) { |
|
|
|
return a * 5; |
|
|
|
} |
|
|
|
|
|
|
|
float multiply_by_percentage(float num, float percentage) { |
|
|
|
float multi_by_percentage(float num, float percentage) { |
|
|
|
return num * (percentage / 100); |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_random(int num) { |
|
|
|
int multi_by_random(int num) { |
|
|
|
int random_factor = random_factor % 10 + 1; |
|
|
|
return num * random_factor; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_string(const char* str, int factor) { |
|
|
|
int multi_string(const char* str, int factor) { |
|
|
|
int len = strlen(str); |
|
|
|
int result = 0; |
|
|
|
for (int i = 0; i < len; i++) { |
|
|
@ -44,27 +45,25 @@ int multiply_string(const char* str, int factor) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_sum(int num1, int num2) { |
|
|
|
return num1 * (num2 + 1); |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_two_complements(int num1, int num2) { |
|
|
|
|
|
|
|
int multi_two_comp(int num2, int num3) { |
|
|
|
int result = 0; |
|
|
|
while (num1 != 0) { |
|
|
|
if (num1 & 1) { |
|
|
|
result += num2; |
|
|
|
while (num2 != 0) { |
|
|
|
if (num2 & 1) { |
|
|
|
result += num3; |
|
|
|
} |
|
|
|
num1 >>= 1; |
|
|
|
num2 <<= 1; |
|
|
|
num2 >>= 2; |
|
|
|
num3 <<= 2; |
|
|
|
} |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_even(int num, int factor) { |
|
|
|
int multi_by_even(int num, int factor) { |
|
|
|
return (num >> 1) << (factor + 1); |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_lookup_table(int num1, int num2) { |
|
|
|
int multi_lookup_table(int num1, int num2) { |
|
|
|
int lookup_table[10][10] = { |
|
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
|
|
|
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, |
|
|
@ -80,7 +79,7 @@ int multiply_using_lookup_table(int num1, int num2) { |
|
|
|
return lookup_table[num1][num2]; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_logical_operations(int num1, int num2) { |
|
|
|
int multi_logical_op(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num2) { |
|
|
|
if (num2 & 1) { |
|
|
@ -92,15 +91,15 @@ int multiply_using_logical_operations(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_modulo(int num1, int num2, int modulo) { |
|
|
|
int multi_modulo(int num1, int num2, int modulo) { |
|
|
|
return (num1 % modulo) * (num2 % modulo) % modulo; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_prime(int num, int prime) { |
|
|
|
return num * (prime - 1) + num; |
|
|
|
int multi_by_prime(int num, int prime) { |
|
|
|
return num * (prime - 2) + num; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_increment(int num1, int num2) { |
|
|
|
int multi_increment(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
for (int i = 0; i < num2; ++i) { |
|
|
|
result += num1; |
|
|
@ -108,11 +107,11 @@ int multiply_using_increment(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_prime_and_its_square(int num, int prime) { |
|
|
|
int multi_by_prime_and_its_square(int num, int prime) { |
|
|
|
return num * (prime + square (prime)); |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_odd(int num, int factor) { |
|
|
|
int multi_by_odd(int num, int factor) { |
|
|
|
int result = 0; |
|
|
|
for (int i = 0; i < factor; ++i) { |
|
|
|
result += num; |
|
|
@ -120,7 +119,7 @@ int multiply_by_odd(int num, int factor) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_binary_enumeration(int num1, int num2) { |
|
|
|
int multi_binary_enumeration(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num1 && num2) { |
|
|
|
if (num2 & 1) { |
|
|
@ -132,17 +131,17 @@ int multiply_using_binary_enumeration(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_using_differences(int num1, int num2) { |
|
|
|
int multi_differences(int num1, int num2) { |
|
|
|
int difference = (num1 > num2) ? num1 - num2 : num2 - num1; |
|
|
|
int sum = (num1 > num2) ? num1 + num2 : num2 + num1; |
|
|
|
return (sum - difference) * difference / 4; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_recursive_optimized(int num1, int num2) { |
|
|
|
int multi_recursive_optimized(int num1, int num2) { |
|
|
|
if (num2 == 0) { |
|
|
|
return 0; |
|
|
|
} |
|
|
|
int result = multiply_recursive_optimized(num1, num2 >> 1); |
|
|
|
int result = multi_recursive_optimized(num1, num2 >> 1); |
|
|
|
result <<= 1; |
|
|
|
if (num2 & 1) { |
|
|
|
result += num1; |
|
|
@ -150,7 +149,7 @@ int multiply_recursive_optimized(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_octal_numbers(int num1, int num2) { |
|
|
|
int multi_octal_numbers(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num2 != 0) { |
|
|
|
if (num2 & 1) { |
|
|
@ -163,7 +162,7 @@ int multiply_octal_numbers(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_hex_numbers(int num1, int num2) { |
|
|
|
int multi_hex_numbers(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num2 != 0) { |
|
|
|
if (num2 & 1) { |
|
|
@ -175,7 +174,7 @@ int multiply_hex_numbers(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_exponentiation(int base, int exponent) { |
|
|
|
int multi_exponentiation(int base, int exponent) { |
|
|
|
int result = 1; |
|
|
|
while (exponent > 0) { |
|
|
|
if (exponent & 1) { |
|
|
@ -187,15 +186,15 @@ int multiply_exponentiation(int base, int exponent) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int multiply_by_euler_prime(int num) { |
|
|
|
int multi_by_euler_prime(int num) { |
|
|
|
return (num << 1) + (num << 2) - num; |
|
|
|
} |
|
|
|
|
|
|
|
int fibonacci_multiply(int num, int fib) { |
|
|
|
int fibonacci_multi(int num, int fib) { |
|
|
|
return num * fib; |
|
|
|
} |
|
|
|
|
|
|
|
int repeated_division_multiply(int num1, int num2) { |
|
|
|
int repeated_division_multi(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num1 > 0) { |
|
|
|
if (num1 % 2 == 1) { |
|
|
@ -207,11 +206,11 @@ int repeated_division_multiply(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int bernoulli_multiply(int num, int bernoulli) { |
|
|
|
int bernoulli_multi(int num, int bernoulli) { |
|
|
|
return num * bernoulli; |
|
|
|
} |
|
|
|
|
|
|
|
float power_multiply(float base, int exponent) { |
|
|
|
float power_multi(float base, int exponent) { |
|
|
|
float result = 1.0; |
|
|
|
for (int i = 0; i < exponent; i++) { |
|
|
|
result *= base; |
|
|
@ -219,7 +218,7 @@ float power_multiply(float base, int exponent) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int bitwise_multiply(int num1, int num2) { |
|
|
|
int bitwisee_multi(int num1, int num2) { |
|
|
|
int result = 0; |
|
|
|
while (num1) { |
|
|
|
if (num1 & 1) { |
|
|
@ -231,7 +230,7 @@ int bitwise_multiply(int num1, int num2) { |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
int karatsuba_multiply(int num1, int num2) { |
|
|
|
int karatsu_multi(int num1, int num2) { |
|
|
|
// Base case: If numbers are less than 10, return their product directly |
|
|
|
if (num1 < 10 || num2 < 10) { |
|
|
|
return num1 * num2; |
|
|
@ -247,9 +246,9 @@ int karatsuba_multiply(int num1, int num2) { |
|
|
|
int d = num2 % (int)pow(10, m2); |
|
|
|
|
|
|
|
// Calculate intermediate products |
|
|
|
int ac = karatsuba_multiply(a, c); |
|
|
|
int bd = karatsuba_multiply(b, d); |
|
|
|
int ad_bc = karatsuba_multiply(a + b, c + d) - ac - bd; |
|
|
|
int ac = karatsu_multi(a, c); |
|
|
|
int bd = karatsu_multi(b, d); |
|
|
|
int ad_bc = karatsu_multi(a + b, c + d) - ac - bd; |
|
|
|
|
|
|
|
// Calculate the final result |
|
|
|
return ac * (int)pow(10, 2 * m2) + ad_bc * (int)pow(10, m2) + bd; |
|
|
@ -260,5 +259,8 @@ int karatsuba_multiply(int num1, int num2) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|