Ultra Geile Studenten Benutzer Oberfläche (UGSBO)
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
package com.ugsbo.matrixcalc;
//import java.io.IOException;
/** * Contains all basic matrix math calculations. */ public class MatrixCalcMath {
/** * Mutliplys matrixA and matrixB. * * @param matrixA The Inputmatrix A (right TextArea in the GUI) * @param matrixB The Inputmatrix B (left TextArea in the GUI) * @return The Matrixproduct of the matricies A and B */ public double[][] matrixMultiplication(double[][] matrixA, double[][] matrixB) { if (checkIfMatriciesAreLinked(matrixA, matrixB)) { int rowOfResultMatrix = matrixA.length; int columOfResultMatrix = matrixB[0].length; int ColumsOfMatA = matrixA[0].length; double[][] result = new double[rowOfResultMatrix][columOfResultMatrix];
for (int rowResult = 0; rowResult < rowOfResultMatrix; rowResult++) { for (int columResult = 0; columResult < columOfResultMatrix; columResult++) { for (int columOfA = 0; columOfA < ColumsOfMatA; columOfA++) { result[rowResult][columResult] += matrixA[rowResult][columOfA] * matrixB[columOfA][columResult]; } } } return result; } else { return null; // throw new IllegalArgumentException("Matricies must be linked");
} }
/** * checks if matrixA and matrixB are linked to know if it is possible to * multiply them. If they are linked it is possible. * * @param matrixA The Inputmatrix A (right TextArea in the GUI) * @param matrixB The Inputmatrix B (left TextArea in the GUI) * @return true if you can Muliply A with B false if not. */ public boolean checkIfMatriciesAreLinked(double[][] matrixA, double[][] matrixB) { if (matrixA == null) { return false; } if (matrixA.length == 0) { return false; } if (matrixA[0].length == matrixB.length) { return true; } return false; }
/** * Adds two matroices A and B. Adding matrix A to matrix B is the same as adding * B to A. * * @param matrixA The Inputmatrix A (right TextArea in the GUI) * @param matrixB The Inputmatrix B (left TextArea in the GUI) * @return The Matrixsum of matrix A and matrix B */ public double[][] matrixAddition(double[][] matrixA, double[][] matrixB) { if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { double[][] result = new double[matrixA.length][matrixA[0].length]; for (int rows = 0; rows < matrixA.length; rows++) { for (int colums = 0; colums < matrixA[0].length; colums++) { result[rows][colums] = matrixA[rows][colums] + matrixB[rows][colums]; } } return result; } else { return null; // TODO Fragen wie man eine Exception testen kann.
// throw new IllegalArgumentException("Matricies need to have the same
// Dimensions");
} }
/** * In order to adding two Matricies they must have the same Dimensions. This * Methode checks if this is the case. * * @param matrixA The Inputmatrix A (right TextArea in the GUI) * @param matrixB The Inputmatrix B (left TextArea in the GUI) * @return true if the Dimensions of Matrix A equals the Dimensions Matrix B */ public boolean checkIfMatriciesAreTheSameDimension(double[][] matrixA, double[][] matrixB) { if (matrixA.length == matrixB.length && matrixA[0].length == matrixB[0].length) { return true; } else { return false; }
}
/** * Substracts matrix A by the matrix B. Substaction for Matrices is just the * substraction of each component with thier coorsponding component. * * @param matrixA The Inputmatrix A (right TextArea in the GUI) * @param matrixB The Inputmatrix B (left TextArea in the GUI * @return matrix A substracted by matrix B */ public double[][] matrixSubstraction(double[][] matrixA, double[][] matrixB) { if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { double[][] result = new double[matrixA.length][matrixA[0].length]; for (int rows = 0; rows < matrixA.length; rows++) { for (int colums = 0; colums < matrixA[0].length; colums++) { result[rows][colums] = matrixA[rows][colums] - matrixB[rows][colums]; } } return result; } else { return null; // TODO Fragen wie man eine Exception testen kann.
// throw new IllegalArgumentException("Matricies need to have the same
// Dimensions");
} }
/** * Transposes the Input Matrix. Swaps rows with colums. * * @param matrixA The Inputmatrix A wich will be Transposed * @return The Transposed matrix of matrix A */ public double[][] matrixTransponation(double[][] matrixA) { if(matrixA == null) { // TODO hier auch die exception.
return null; } int columCountResult = matrixA.length; int rowCountResult = matrixA[0].length; double[][] result = new double[rowCountResult][columCountResult]; for (int row = 0; row < rowCountResult; row++) { for (int colum = 0; colum < columCountResult; colum++) { result[row][colum] = matrixA[colum][row]; } } return result; } }
|