Implement Updates Over the Air for
ESP8266 microcontrollers

Dustin Frisch
C/C++ for Embedded Systems and Physical Computing
Angewandte Informatik
University of Applied Sciences Fulda
dustin.frisch@informatik.hs-fulda.de

February 8, 2017

This article describes the implementation of durable and stable system
for building firmware updates for embedded systems based on ESP8266E]
microcontrollers. This includes the mechanisms used to build the updates,
distribute and install them on the device.

1 Introduction

In embedded systems, the software, also known as firmware, is an essential part of
the system. On one side, it interacts with the hardware in a system specific way by
implementing the specifications required by the components used in the system. On
the other side, it provides use-case dependent functionality in interaction with general
purpose hardware components.

Embedded systems are often thought as systems that never change their requirements
or functionality. But practical use shows that the environment in which these systems
run do, in fact, change. These changes include, but are not limited to, modifications
of to the expected behavior or additions to it, reconfiguration of parameters related to
communication with other systems and the users and correcting errors that have been
reported after deployment. In almost all cases, the requirements can be accomplished
by changing the firmware and does no need any modification of the hardware. For
updating the firmware on a system being deployed, the system must provide an interface
for altering the firmware. In addition, such an interface should provide mechanisms to
check which firmware is currently installed and which configuration parameters are used.

Even if systems are equipped with an interface for applying updates, the maintenance
cost can still be enormous because administrators have to interact with each device
physically. For systems that are located in areas where reachability is limited the cost
is increased even more. If a system is already able to communicate over a network
interface, this can be leveraged to apply updates on these system - this is typically
referred to as Quer the Air (OTA). By reusing the existing communication channels, the
dedicated update interface can be omitted which leads to smaller packaging and reduces
production cost. It also decreases the maintenance cost drastically because updates can
be installed remotely.

OTA updates allows the administrators to apply automation methods on the update
process allowing to roll out updates in a controlled fashion. I.e. updates can be done on
testing devices first, followed by security-critical deployments and subordinate ones can
be delayed to times where the device is not utilized. Information about the update status
provided by the devices allows administrators to apply monitoring techniques ensuring
all updates are installed and devices ar in the desired state.

'ESPRESSIF. ESP8266EX Overview. 2017. URL: http://web.archive.org/web/20170130001257/
http://www.espressif.com/en/products/hardware/esp8266ex/overview (visited on 01/30/2017).

http://web.archive.org/web/20170130001257/http://www.espressif.com/en/products/hardware/esp8266ex/overview
http://web.archive.org/web/20170130001257/http://www.espressif.com/en/products/hardware/esp8266ex/overview

2 Environment

The home-automation projects developed by Magrathea Laboratories e. V.E] the local
hackerspace in Fulda, are used to provide control over the different actors and sensors
in the foundations rooms to visitors and members locally and remotely.

The different components available (like the door status, power sockets, projectors
and screens, temperature sensors, etc.) are all managed by the home-automation con-
troller driven by the software home-assistantﬁ It provides direct control over all existing
components using a web Ul and allows to define rules and automations on how these
components interact.

The hackerspace has developed a common software and hardware platform for its
home-automation projects called ESPGTEI For the hardware, boards based on the ESP8266
micro-controllers, mostly ESP-01 5{ﬂ boards, are used in combination with self-developed
power supplies and use-case specific hardware components. These boards provide a
Microcontroller Unit (MCU) fast enough for all required scenarios and integrate WiFi
without requiring any extra components. The software is based on the Smingﬁ library,
which in turn is based on the open source SDK for ESP8266 and integrates a lot of
other software components for easy use. To build the software, a Makeﬁle[] is used and
provides a simple way for reproducible builds.

For communication with the controller, the MQTTE] protocol is used. It provides
a lightweight messaging mechanism implementing the publish-subscribe pattern which
allows devices to listen for commands and publish their current state to the controller
and other interested parties. The controller software has out-of-the-box support for
this protocol which allows easy integration of all different device types using the same
patterns.

The components all share the same configuration in regard of the network access
and the controller to communicate with. The configuration is provided during build
time which eschews the need for a configuration interface and reducing the management
overhead thus minimizing security leaks.

2Magrathea Laboratories e.V. Magrathea Laboratories - Creating new Worlds. 2016. URL: http:
//web.archive.org/web/20161116123421/https://maglab.space/| (visited on 11/16/2016).

3Home Assistant. Awaken your home. 2017. URL: http://web.archive.org/web/20170102023619/
http://home-assistant.io/| (visited on 01/02/2017).

1ESPer. ESPer - Space Automation Firmware for ESP8266. 2017. URL: https://git.maglab.space/
esper/esper| (visited on 02/02/2017).

SSparkFun. WiFi Module - ESP8266. 2017. URL: http://web.archive.org/web/20170104002307/
https://www.sparkfun.com/products/13678 (visited on 10/28/2017).

5Sming. Sming - Open Source framework for high efficiency native ESP8266 development. 2016. URL:
http://web.archive. org/web/20170206144443 /http://sminghub . github.io/Sming/about/
(visited on 11/25/2016).

"The IEEE and The Open Group. The Open Group Base Specifications Issue 6 - make - maintain,
update, and regenerate groups of programs. 2004. URL: http://pubs.opengroup.org/onlinepubs/
009695399/utilities/make.html| (visited on 11/27/2016).

8OASIS Standard Incorporating. MQTT Version 3.1.1 Plus Errata 01. 2015. URL: http://docs.
oasis-open.org/mgtt/mqtt/v3.1.1/errata0l/os/mqtt-v3.1.1-errata0l-os-complete.html
(visited on 01/15/2017).

http://web.archive.org/web/20161116123421/https://maglab.space/
http://web.archive.org/web/20161116123421/https://maglab.space/
http://web.archive.org/web/20170102023619/http://home-assistant.io/
http://web.archive.org/web/20170102023619/http://home-assistant.io/
https://git.maglab.space/esper/esper
https://git.maglab.space/esper/esper
http://web.archive.org/web/20170104002307/https://www.sparkfun.com/products/13678
http://web.archive.org/web/20170104002307/https://www.sparkfun.com/products/13678
http://web.archive.org/web/20170206144443/http://sminghub.github.io/Sming/about/
http://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html
http://pubs.opengroup.org/onlinepubs/009695399/utilities/make.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html

3 Requirements

The following requirements are defined as global project goals and has been refined
during the work on the project multiple times.

The systems should be able to perform updates on the release of new software
releases without administrative interaction. If a new version of the firmware is
published, it should be prepared automatically for installation to the target devices.
All these devices should then download and install the new software version and
start using it if no errors has occurred during the process.

To ensure minimal maintenance effort, the update process should be insusceptible
to errors as most as possible. Even if the installation of an update fails in the
middle of reprogramming the controller, the system should continue to work full
functional immediately and after a reboot.

Downloading the updated firmware should be done over the WiFi interface us-
ing the same network connection as used during normal operation. Fetching the
firmware should be done side-by-side with other traffic used during operation.

Reducing network load and aiming for the maximum possible device uptime is
critical. Therefore, the update process should only be done if a new version is
available. In contrast, the release of a new update should be rolled out to all
devices as fast as possible. During the checking for available updates and while
downloading such an update, the device should continue to work as usual.

For easy maintenance and monitoring, each device should provide detailed infor-
mation about the currently installed firmware version and other details in relation
to the update process.

Devices are categorized by types. Each device type runs the same software and
therefore provides the same functionality. As the device type is hardly coupled
to the hardware. It is provided through a global constant at compile time and it
must never be changed during operation. Updates must ensure that the correct
firmware according to the device type is used while reprogramming.

4 Implementation

Implementing OTA updates under the given requirements involves three different com-
ponents which interact closely.

The first component implements the update mechanism on the firmware running on
the embedded device. It is responsible for checking and downloading the updates and
installing them. Second, the build system is in charge of building the firmware from
source and publishing the built binary images. At last the deployment provides infras-
tructure for downloading the binary firmware images and triggering the update on all
devices.

4.1 The update mechanism

The implementation of the update mechanism consists of three parts which interact
closely: checking for updates, reprogramming the device and reconfiguring the boot
process. This sections describes all these parts in detail.

The build-time configuration was extended to include a new option called UPDATER_URL
which is the base URL used to query the update server. Each device requires to have
this option set to make the updates work. If the option is skipped, the code for update
management is excluded during the build.

4.1.1 Checking for update

Initially, each device checks the update server regularly for the current firmware version
and initializes the update process if remote and local versions differ. To do so, the update
server provides a file for each device type containing the available version identifier which
are stored beside the firmware binary files. These version identifier files are provided by
the update server using HTTP 1.1 E] under the following path pattern: $DEVICE.version
(whereas $DEVICE is the device type name). The version identifier can be an arbitrary
string as the content is not interpreted semantically but only compared to the version
identifier used during build time.

Each device tries to fetch the version identifier file once every hour. After the version
identifier file has been downloaded successfully, the whole file content is compared to
the version identifier provided during build time. If the version identifiers differ, the
update process is initialized; if the download has failed, the update server or the network
connection was not available or any other error occurred, another attempt will be made
at the next interval.

In addition to the interval, a special MQTT topic shared by all devices is subscribed
on device startup: $MQTT_REALM/update. Every time a message is received on this topic,
a fetch attempt for the version identifier file is triggered. This allows faster roll-outs of
updates and finer control for manual maintenance.

4.1.2 Reprogramming the device

As the binary to download and to flash possibly exceed the size of free memory heap
space, the received data must be written to the flash directly. In contrasts, executing the
code from the memory mapped flash while writing the same area with the downloaded
update leads to errors, as the executed code changes immediately to the updated one.
To avoid that, the flash is split in half to contain two firmware ROMs with different
versions, one being executed and one which is being downloaded. This standby firmware
also acts as a safety mechanism if the download fails or is interrupted as the previous
version stays intact and can still be used. In case of an error the old firmware is kept
unchanged and will be used until downloading of a newer firmware succeeds.

°The Internet Society. Hypertext Transfer Protocol — HTTP/1.1. 1999. URL: https://www.w3.org/
Protocols/rfc2616/rfc2616.html (visited on 01/15/2017).

https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html

iromO_O_seg : org = (0x40200000 // The memory mapping address
+ 0x2000 // Bootloader code and config

+ 0x10 // Data offset after header
+ 1M / 2 * ${SLOT} // Offset for the ROM slot

),

len

(1M / 2 - 0x2010) // Half ROM size excl. bootloader

Figure 1: Linker script to build firmware for two ROM slots.

Microcontroller boards based on the ESP8266 MCU are
mostly following the same layout: the MCU is attached to
a flash chip which contains bootloader, firmware and other
application data. The memory mapping mechanism of the
MCU allows only a single page of 1 MB flash to be mapped
at the same tim@ and the selected range must be aligned
to 1 MB blocks. As the ESP-01s is only equipped with
1MB of flash, this means that the whole memory is mapped
to a continuous address space. Therefore, the second ROM
can not be re-mapped to have the same start address as
the first ROM. While the firmware is executed without any
dynamic linking mechanism and the chip does not support
position independent code, the addresses used in the ROMs
are dependent to the offset at which the firmware is stored.
This arises the need of building two firmware binaries, one
for each target location. To do so, a linker script for each
of the two ROM slots was created which are used to cre-
ate two variations of the same firmware which only differ
in ROM placement. The two resulting firmware binaries
files are both provided for download via HTTP 1.1 - which
of these files to download is selected by the device during
the download process depending on the target ROM slot.
Listing [T] shows the only difference between the two linker
scripts, whereas $SLOT must be replaced with the slot num-
ber according to the current build.

Second ROM

0x100000

0x082000

Padding for alignment

First ROM

Figure 2: The

0x080000

0x002000
::::::::E%jiIIIIIIIIIIIIIIIII
0x000000

flash lay-

out used for two
ROMs.

In addition to the two ROMSs, the flash must provide room for the bootloader and its
configuration. rBooﬂ has been choosen as it is integrated within the Sming framework
and allows to boot to multiple ROMs. For configuration, a rBoot specific structure is
placed in the flash at a well-known location directly after the space reserved for the

0ESP8266 community wiki. ESP8266 Memory Map. 2016. URL: http://web.archive.org/web/
20161118224802/http: //www.esp8266 . com/wiki/doku.php?id=esp8266 _memory_map| (visited on

01/30/2017).

"Richard Antony Burton. An open source bootloader for the ESP8266. 2016. URL: http://web.
archive.org/web/20160611044740/https://github.com/raburton/rboot| (visited on 01/30/2017).

http://web.archive.org/web/20161118224802/http://www.esp8266.com/wiki/doku.php?id=esp8266_memory_map
http://web.archive.org/web/20161118224802/http://www.esp8266.com/wiki/doku.php?id=esp8266_memory_map
http://web.archive.org/web/20160611044740/https://github.com/raburton/rboot
http://web.archive.org/web/20160611044740/https://github.com/raburton/rboot

bootloader code. This structure contains, among other things, the target offsets for all
known ROMs and the number of the ROM to boot from on next reboot.

The full memory layout of this approach is shown in figure [2l To calculate the origin
of application data for each slot, the available memory of 1 MB is split in half and an
offset of the size of bootloader code and its configuration (0x2000 bytes) is added. For
alignment and easy debugging, the second block is also shifted by the same amount as
the first block. This unused gap of 8192 bytes is used by some applications to store
persistent data which can persist over application updates.

#define UPDATER_URL_ROM(slot) ((UPDATER_URL "/" DEVICE ".rom" slot))

// Select rom slot to flash
const auto& bootconf = rboot_get_config();

// Add items to flash

if (bootconf.current_rom == 0) {
updater.addItem(bootconf.roms[1], UPDATER_URL_ROM("1"));
updater.switchToRom(1);

} else {
updater.addItem(bootconf.roms[0], UPDATER_URL_ROM("0"));
updater.switchToRom(0) ;

Figure 3: The flash layout used for two ROMs.

For installing a firmware update, the new firmware binary file is downloaded via a
HTTP GET request. The update server provides these files in the exact same way
as it provides the version identifier files but only the path pattern differs: the suffixes
.rom0 and .roml are used to provide the firmware binary files for the first and second
slot correspondingly. These provided firmware file are the exact same one as used to
initially flash the chip for the according version. Using the same file for flashing and
updating allows better debugging by eliminating errors related to the update process
and makes development and initial installation easy. Listing |3|shows the algorithm used
to determine the download address and reconfiguring the bootloader.

After the download of a new ROM has been finished successfully, the bootloader
configuration is altered to boot to the new ROM slot and the device is rebooted.

4.1.3 Publish device information

For monitoring and maintenance purposes, each device publishes a set of information
to a well-known MQTT topic after connecting to the network. Beside already existing
dates like device type, chip and flash ID the information block has been extended with
details about the bootloader, SDK and firmware version as well as relevant details from
the bootloader configuration like the currently booted ROM slot and the default ROM
slot to boot. This allows administrators to find devices with outdated bootloaders and

helps to find missing and failed updates.

4.2 Multi-Device build infrastructure

The firmware for all ESP8266 based devices in the hackerspace are all based on the same
framework. Sming provides the base library for this framework. In addition, components
and functionality shared by all devices has been identified and are providing a framework
for the existing and possible further devices. This framework provides a functional base
for all devices and allows to reuse code providing functionality which is common in
multiple devices. The framework also includes a build system which allows to configure
some basic parameters for all devices. Including, but not limited to, the Wi-Fi access
parameters, the MQTT connection settings and the updater URLs. By sharing the same
code, all devices ensure to have a common behavior when it comes to reporting the device
status or interacting with the home-automation controller. This eases configuration and
allows to collect information about all devices at a central point.

Each device firmware exists as a separate project and includes a link to the framework.
As development on these devices happens in cycles, older projects are missing updates of
the framework and there do not benefit from added features or fixed problems. Updating
the framework version and rebuilding the firmware would often result in an easy gain of
these benefits but requires manual interaction. More problems will arise if the application
programming interface (API) of the framework has changed. Then the device firmware
must be updated to use the changed API which can be an unpleasant and complex task
and leads to higher latency for firmware updates.

To prevent these problems the device firmware of all devices in the space is now
integrated with the framework into a larger project. By doing so, the each device specific
code is always linked to the latest version of the framework. Device specific code is now
organized as a folder for each device type. The build system has been modified to scan
for all device specific folders and call the original build process for each of them.

4.2.1 Framework integration

The framework has been changed to keep control over the application life-cycle. It
ensures that the device unspecific code is executed at the right time and provide an API
for device specific functionality.

The framework specifies a simple interface which must be implemented by each device.
A single function Device* getDevice() must be defined exactly once in each device
specific folder. To implement this interface, a static instance of Device is created and
returned. Each Device is populated with device specific Feature instances. While the
Feature-API leverages common runtime polymorphism to share functionality between
features, the initial Device creation uses compile-time polymorphism which reduces the
need of memory management and increases performance by avoiding virtual function
tables. Listing [4] shows the complete device specific code used for a simple power socket.

#include "../Device.h"
#include "../features/Socket.h"

Device device:

constexpr const char SOCKET_NAME[] = "socket";
constexpr const uintl6_t SOCKET_GPIO = 12;
OnOffFeature<SOCKET_NAME, SOCKET_GPIO, false, 1> socket(&device);

Device* getDevice() {
return &device;

}

Figure 4: Device specific code for a socket driver.

4.2.2 Build system

The existing Makefile has been refactored to accept a parameter for device type identifiers
called DEVICE and to create its whole output inside a subdirectory specific to the device
type. Another Makefile has been created which scans a project subdirectory and uses
each directory in there as container for device specific code. For each of these directories,
the other Makefile is called and the subdirectories name is used as DEVICE parameter.
By splitting the build and recompiling the framework each time before intermixing it
with the device specific code, the device type identifier can be used inside the shared
framework code.

While building a devices firmware, the version identifier file used during updates is
also created and stored beside the binary firmware image.

For development, each device can be build separately by using the device type identifier
as Makefile target. In addition the prefix /flash can be used to flash a specific firmware.

4.3 Automatic deployment and roll-out

The source code of the ESPer project is published into a GIT source code repository
which is provided by the hackerspace. To avoid interferences between different build
environments on developers computers and roll out new versions as early as possible,
the code has been integrated into a continuous integration (CI) system. The CI based on
drone,r'z] provided as part of the hackerspace infrastructure, allows to execute commands
on each version published into the GIT repository. Therefore a drone configuration file
as shown in Listing |5| has been added to the source code as .drone.yml.

As shown in the configuration Snippet, the build environment includes some special
settings. First, the CONFIG=maglab option let the build system use Configurion.mk.maglab

2Drone. Drone is a Continuous Delivery platform built on Docker, written in Go. 2016. URL:
http://web.archive . org/web/20160705005808 /https : // github . com/drone / drone (visited
on 02/05/2017).

http://web.archive.org/web/20160705005808/https://github.com/drone/drone

build:
image: maglab/sming
environment:
- CONFIG=maglab
- WIFI_PWD=$$WIFI_PWD
- VERSION=$${COMMIT:0:8}
commands:
- make clean
- make
publish:
sftp:
host: eddie.maglab.space
username: esper
files:

- dist/*
destination_path: ’./’
when:

branch: master

Figure 5: The drone configuration for the ESPer project.

instead of the default configuration file. This configuration file is stored inside the repos-
itory, too. To keep the WiFi password secret, it is not written down in the configuration
but must be specified in the environment. To include secrets into a build process while
allowing to keep the configuration public, drone allows to encrypt these with a repository
specific key. Using this method, the password is stored as .drone.sec file inside the
repository from where it is injected into the build environment. At last, the firmware
version is configured to be made out of the first 8 letters of the GIT commit hash, which
uniquely identifies a version of the source code.

For deployment, only the master branch is considered. After a successful build, all
distribution files (the binary firmware files and the version files) of all devices are copied
to the machine running the home automation controller software into a directory served
by a HT'TP server. The used configuration file references this server as source of updates.

5 Conclusion

The project has been successfully deployed in the hackerspace and is now an essential
part of home-automation development and deployment.

The update infrastructure has been the crucial point for decisions to wards the frame-
work for most members. Allowing to do updates and the shared configuration and
behavior results in a massive speedup when it comes to project deployment. Before
that, the cost for an update was estimated so high, that most projects tend to delay
deployment until all required and wanted features are implemented. Now, as the devices
are deployed as soon as the hardware is considered stable, these devices start to provide

10

functionality early and therefore the developers can get better feedback on the provided
functionality.

Most of the devices running the update-enabled firmware have undergone multiple
major updates without any problems. This includes a major network configuration
change and a big stability fix for network communication. All devices applied the update
successfully and started to work without any manual interaction required afterwards.

The project will be continued to extend the functionality with features already being
in development. The latest development includes enhanced checksum verification where
the firmware can be signed using cryptographic methods and will be verified during the
update process. In addition, the information provided by the device about the firmware
status will be enhanced to allow better control and reduce maintenance effort even more.

11

	Introduction
	Environment
	Requirements
	Implementation
	The update mechanism
	Checking for update
	Reprogramming the device
	Publish device information

	Multi-Device build infrastructure
	Framework integration
	Build system

	Automatic deployment and roll-out

	Conclusion

