Lukas Reichwein
5 years ago
2 changed files with 296 additions and 228 deletions
-
483src/main/java/com/ugsbo/matrixcalc/MatrixCalcMath.java
-
41src/test/java/com/ugsbo/matrixcalc/StringToMatrixTest.java
@ -1,229 +1,256 @@ |
|||
package com.ugsbo.matrixcalc; |
|||
|
|||
/** |
|||
* Contains all basic matrix math calculations. |
|||
*/ |
|||
public class MatrixCalcMath { |
|||
|
|||
/** |
|||
* Mutliplys matrixA and matrixB. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return The Matrixproduct of the matricies A and B |
|||
*/ |
|||
public double[][] matrixMultiplication(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreLinked(matrixA, matrixB)) { |
|||
int rowOfResultMatrix = matrixA.length; |
|||
int columOfResultMatrix = matrixB[0].length; |
|||
int ColumsOfMatA = matrixA[0].length; |
|||
double[][] result = new double[rowOfResultMatrix][columOfResultMatrix]; |
|||
|
|||
for (int rowResult = 0; rowResult < rowOfResultMatrix; rowResult++) { |
|||
for (int columResult = 0; columResult < columOfResultMatrix; columResult++) { |
|||
for (int columOfA = 0; columOfA < ColumsOfMatA; columOfA++) { |
|||
result[rowResult][columResult] += matrixA[rowResult][columOfA] * matrixB[columOfA][columResult]; |
|||
} |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies must be linked"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* checks if matrixA and matrixB are linked to know if it is possible to |
|||
* multiply them. If they are linked it is possible. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return true if you can Muliply A with B false if not. |
|||
*/ |
|||
public boolean checkIfMatriciesAreLinked(double[][] matrixA, double[][] matrixB) { |
|||
if (matrixA == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == 0) { |
|||
return false; |
|||
} |
|||
if (matrixA[0].length == matrixB.length) { |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
/** |
|||
* Adds two matroices A and B. Adding matrix A to matrix B is the same as adding |
|||
* B to A. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return The Matrixsum of matrix A and matrix B |
|||
*/ |
|||
public double[][] matrixAddition(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { |
|||
double[][] result = new double[matrixA.length][matrixA[0].length]; |
|||
for (int rows = 0; rows < matrixA.length; rows++) { |
|||
for (int colums = 0; colums < matrixA[0].length; colums++) { |
|||
result[rows][colums] = matrixA[rows][colums] + matrixB[rows][colums]; |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* In order to adding two Matricies they must have the same Dimensions. This |
|||
* Methode checks if this is the case. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return true if the Dimensions of Matrix A equals the Dimensions Matrix B |
|||
*/ |
|||
public boolean checkIfMatriciesAreTheSameDimension(double[][] matrixA, double[][] matrixB) { |
|||
if (matrixA == null || matrixA.length == 0) { |
|||
return false; |
|||
} |
|||
if (matrixA[0] == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == matrixB.length && matrixA[0].length == matrixB[0].length) { |
|||
return true; |
|||
} else { |
|||
return false; |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* Substracts matrix A by the matrix B. Substaction for Matrices is just the |
|||
* substraction of each component with thier coorsponding component. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI |
|||
* @return matrix A substracted by matrix B |
|||
*/ |
|||
public double[][] matrixSubstraction(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { |
|||
double[][] result = new double[matrixA.length][matrixA[0].length]; |
|||
for (int rows = 0; rows < matrixA.length; rows++) { |
|||
for (int colums = 0; colums < matrixA[0].length; colums++) { |
|||
result[rows][colums] = matrixA[rows][colums] - matrixB[rows][colums]; |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* Transposes the Input Matrix. Swaps rows with colums. |
|||
* |
|||
* @param matrixA The Inputmatrix A wich will be Transposed |
|||
* @return The Transposed matrix of matrix A |
|||
*/ |
|||
public double[][] matrixTransponation(double[][] matrixA) { |
|||
if (matrixA == null) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
if (matrixA.length == 0) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
if (matrixA[0] == null) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
int columCountResult = matrixA.length; |
|||
int rowCountResult = matrixA[0].length; |
|||
double[][] result = new double[rowCountResult][columCountResult]; |
|||
for (int row = 0; row < rowCountResult; row++) { |
|||
for (int colum = 0; colum < columCountResult; colum++) { |
|||
result[row][colum] = matrixA[colum][row]; |
|||
} |
|||
} |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinant of a Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix |
|||
* @return The Determinant of the Matrix A |
|||
*/ |
|||
public double calcDeterminat(double[][] matrixA) { |
|||
// checking if a Determinant can be calculated. |
|||
double result = 0.0; |
|||
if (checkIfMatrixIsQuadradtic(matrixA)) { |
|||
if (getMatrixRowCount(matrixA) == 2) { |
|||
result = calc2by2Determinant(matrixA); |
|||
} else if (getMatrixRowCount(matrixA) == 3) { |
|||
result = calc3by3Determinant(matrixA); |
|||
|
|||
} else { |
|||
throw new IllegalArgumentException("Matrix is not 2 by 2 or 3 by 3"); |
|||
} |
|||
|
|||
} else { |
|||
throw new IllegalArgumentException("Matrix must be Quadratic"); |
|||
} |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinat of an three by three Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix form wich the Determinat will be calculated |
|||
* @return the Determinant of the Matrix |
|||
*/ |
|||
private double calc3by3Determinant(double[][] matrixA) { |
|||
double result = matrixA[0][0] * matrixA[1][1] * matrixA[2][2] + matrixA[0][1] * matrixA[1][2] * matrixA[2][0] |
|||
+ matrixA[0][2] * matrixA[1][0] * matrixA[2][1] - matrixA[0][0] * matrixA[1][2] * matrixA[2][1] |
|||
- matrixA[0][1] * matrixA[1][0] * matrixA[2][2] - matrixA[0][2] * matrixA[1][1] * matrixA[2][0]; |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinat of an two by two Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix form wich the Determinat will be calculated |
|||
* @return the Determinant of the Matrix |
|||
*/ |
|||
private double calc2by2Determinant(double[][] matrixA) { |
|||
double result = matrixA[0][0] * matrixA[1][1] - matrixA[0][1] * matrixA[1][0]; |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Returns the Number of rows of a Matrix. |
|||
* |
|||
* @param matrixA the Inputmatrix form wich the rows will be counted |
|||
* @return Number of rows |
|||
*/ |
|||
private int getMatrixRowCount(double[][] matrixA) { |
|||
return matrixA.length; |
|||
} |
|||
|
|||
/** |
|||
* Checks if the rows and colums of an Matrix are equal. If they are equal the |
|||
* Matrix is Quadratic and the function will return true. |
|||
* |
|||
* @param matrixA the Inputmatrix for wich the rows and colums will be compared |
|||
* @return isQuadratic |
|||
*/ |
|||
private boolean checkIfMatrixIsQuadradtic(double[][] matrixA) { |
|||
if (matrixA == null) { |
|||
return false; |
|||
} |
|||
if (matrixA[0] == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == matrixA[0].length) { |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
package com.ugsbo.matrixcalc; |
|||
|
|||
import java.util.ArrayList; |
|||
|
|||
/** |
|||
* Contains all basic matrix math calculations. |
|||
*/ |
|||
public class MatrixCalcMath { |
|||
|
|||
/** |
|||
* Mutliplys matrixA and matrixB. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return The Matrixproduct of the matricies A and B |
|||
*/ |
|||
public double[][] matrixMultiplication(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreLinked(matrixA, matrixB)) { |
|||
int rowOfResultMatrix = matrixA.length; |
|||
int columOfResultMatrix = matrixB[0].length; |
|||
int ColumsOfMatA = matrixA[0].length; |
|||
double[][] result = new double[rowOfResultMatrix][columOfResultMatrix]; |
|||
|
|||
for (int rowResult = 0; rowResult < rowOfResultMatrix; rowResult++) { |
|||
for (int columResult = 0; columResult < columOfResultMatrix; columResult++) { |
|||
for (int columOfA = 0; columOfA < ColumsOfMatA; columOfA++) { |
|||
result[rowResult][columResult] += matrixA[rowResult][columOfA] * matrixB[columOfA][columResult]; |
|||
} |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies must be linked"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* checks if matrixA and matrixB are linked to know if it is possible to |
|||
* multiply them. If they are linked it is possible. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return true if you can Muliply A with B false if not. |
|||
*/ |
|||
public boolean checkIfMatriciesAreLinked(double[][] matrixA, double[][] matrixB) { |
|||
if (matrixA == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == 0) { |
|||
return false; |
|||
} |
|||
if (matrixA[0].length == matrixB.length) { |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
/** |
|||
* Adds two matroices A and B. Adding matrix A to matrix B is the same as adding |
|||
* B to A. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return The Matrixsum of matrix A and matrix B |
|||
*/ |
|||
public double[][] matrixAddition(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { |
|||
double[][] result = new double[matrixA.length][matrixA[0].length]; |
|||
for (int rows = 0; rows < matrixA.length; rows++) { |
|||
for (int colums = 0; colums < matrixA[0].length; colums++) { |
|||
result[rows][colums] = matrixA[rows][colums] + matrixB[rows][colums]; |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* In order to adding two Matricies they must have the same Dimensions. This |
|||
* Methode checks if this is the case. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI) |
|||
* @return true if the Dimensions of Matrix A equals the Dimensions Matrix B |
|||
*/ |
|||
public boolean checkIfMatriciesAreTheSameDimension(double[][] matrixA, double[][] matrixB) { |
|||
if (matrixA == null || matrixA.length == 0) { |
|||
return false; |
|||
} |
|||
if (matrixA[0] == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == matrixB.length && matrixA[0].length == matrixB[0].length) { |
|||
return true; |
|||
} else { |
|||
return false; |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* Substracts matrix A by the matrix B. Substaction for Matrices is just the |
|||
* substraction of each component with thier coorsponding component. |
|||
* |
|||
* @param matrixA The Inputmatrix A (right TextArea in the GUI) |
|||
* @param matrixB The Inputmatrix B (left TextArea in the GUI |
|||
* @return matrix A substracted by matrix B |
|||
*/ |
|||
public double[][] matrixSubstraction(double[][] matrixA, double[][] matrixB) { |
|||
if (checkIfMatriciesAreTheSameDimension(matrixA, matrixB)) { |
|||
double[][] result = new double[matrixA.length][matrixA[0].length]; |
|||
for (int rows = 0; rows < matrixA.length; rows++) { |
|||
for (int colums = 0; colums < matrixA[0].length; colums++) { |
|||
result[rows][colums] = matrixA[rows][colums] - matrixB[rows][colums]; |
|||
} |
|||
} |
|||
return result; |
|||
} else { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* Transposes the Input Matrix. Swaps rows with colums. |
|||
* |
|||
* @param matrixA The Inputmatrix A wich will be Transposed |
|||
* @return The Transposed matrix of matrix A |
|||
*/ |
|||
public double[][] matrixTransponation(double[][] matrixA) { |
|||
if (matrixA == null) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
if (matrixA.length == 0) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
if (matrixA[0] == null) { |
|||
throw new IllegalArgumentException("Matricies need to have the same Dimensions"); |
|||
} |
|||
int columCountResult = matrixA.length; |
|||
int rowCountResult = matrixA[0].length; |
|||
double[][] result = new double[rowCountResult][columCountResult]; |
|||
for (int row = 0; row < rowCountResult; row++) { |
|||
for (int colum = 0; colum < columCountResult; colum++) { |
|||
result[row][colum] = matrixA[colum][row]; |
|||
} |
|||
} |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinant of a Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix |
|||
* @return The Determinant of the Matrix A |
|||
*/ |
|||
public double calcDeterminat(double[][] matrixA) { |
|||
// checking if a Determinant can be calculated. |
|||
double result = 0.0; |
|||
if (checkIfMatrixIsQuadradtic(matrixA)) { |
|||
if (getMatrixRowCount(matrixA) == 2) { |
|||
result = calc2by2Determinant(matrixA); |
|||
} else if (getMatrixRowCount(matrixA) == 3) { |
|||
result = calc3by3Determinant(matrixA); |
|||
|
|||
} else { |
|||
throw new IllegalArgumentException("Matrix is not 2 by 2 or 3 by 3"); |
|||
} |
|||
|
|||
} else { |
|||
throw new IllegalArgumentException("Matrix must be Quadratic"); |
|||
} |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinat of an three by three Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix form wich the Determinat will be calculated |
|||
* @return the Determinant of the Matrix |
|||
*/ |
|||
private double calc3by3Determinant(double[][] matrixA) { |
|||
double result = matrixA[0][0] * matrixA[1][1] * matrixA[2][2] + matrixA[0][1] * matrixA[1][2] * matrixA[2][0] |
|||
+ matrixA[0][2] * matrixA[1][0] * matrixA[2][1] - matrixA[0][0] * matrixA[1][2] * matrixA[2][1] |
|||
- matrixA[0][1] * matrixA[1][0] * matrixA[2][2] - matrixA[0][2] * matrixA[1][1] * matrixA[2][0]; |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Calculates the Determinat of an two by two Matrix. |
|||
* |
|||
* @param matrixA The Inputmatrix form wich the Determinat will be calculated |
|||
* @return the Determinant of the Matrix |
|||
*/ |
|||
private double calc2by2Determinant(double[][] matrixA) { |
|||
double result = matrixA[0][0] * matrixA[1][1] - matrixA[0][1] * matrixA[1][0]; |
|||
return result; |
|||
} |
|||
|
|||
/** |
|||
* Returns the Number of rows of a Matrix. |
|||
* |
|||
* @param matrixA the Inputmatrix form wich the rows will be counted |
|||
* @return Number of rows |
|||
*/ |
|||
private int getMatrixRowCount(double[][] matrixA) { |
|||
return matrixA.length; |
|||
} |
|||
|
|||
/** |
|||
* Checks if the rows and colums of an Matrix are equal. If they are equal the |
|||
* Matrix is Quadratic and the function will return true. |
|||
* |
|||
* @param matrixA the Inputmatrix for wich the rows and colums will be compared |
|||
* @return isQuadratic |
|||
*/ |
|||
private boolean checkIfMatrixIsQuadradtic(double[][] matrixA) { |
|||
if (matrixA == null) { |
|||
return false; |
|||
} |
|||
if (matrixA[0] == null) { |
|||
return false; |
|||
} |
|||
if (matrixA.length == matrixA[0].length) { |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
public double[][] stringToMatrix(String stringMatrix) { |
|||
|
|||
ArrayList<String[]> singleNumbersArr = new ArrayList<String[]>(); |
|||
|
|||
//Splitting the strings into thier rows |
|||
String[] singleNumbers = null; |
|||
String[] rows = stringMatrix.split("\n"); |
|||
for (int i = 0; i < rows.length; i++) { |
|||
System.out.println(rows[i]); |
|||
singleNumbers = rows[i].split("\\s"); |
|||
singleNumbersArr.add(singleNumbers); |
|||
} |
|||
|
|||
int rowCount = rows.length; //row.length |
|||
int columCount = singleNumbersArr.size(); //output.length |
|||
double[][] result = new double[columCount][rowCount]; |
|||
|
|||
for (int columIndex = 0; columIndex < singleNumbersArr.size(); columIndex++) { |
|||
for (int rowIndex = 0; rowIndex < singleNumbers.length; rowIndex++) { |
|||
result[columIndex][rowIndex] = Double.parseDouble(singleNumbersArr.get(columIndex)[rowIndex]); |
|||
} |
|||
} |
|||
return result; |
|||
} |
|||
|
|||
} |
@ -0,0 +1,41 @@ |
|||
package com.ugsbo.matrixcalc; |
|||
|
|||
import static org.junit.Assert.assertArrayEquals; |
|||
import static org.junit.Assert.assertEquals; |
|||
|
|||
import org.junit.Before; |
|||
import org.junit.Test; |
|||
|
|||
/** |
|||
* Tests the funktionality to Calculate the Determinant of a Matrix. |
|||
*/ |
|||
public class StringToMatrixTest { |
|||
|
|||
private MatrixCalcMath matrixMath; |
|||
|
|||
@Before |
|||
public void setup() { |
|||
matrixMath = new MatrixCalcMath(); |
|||
} |
|||
|
|||
@Test |
|||
public void StringWithSingleDigitNumbersToMatrix_ReturnsEquivalentMatrix() { |
|||
String inputString = "1"; |
|||
double[][] expected = { { 1.0 } }; |
|||
|
|||
double[][] result = matrixMath.stringToMatrix(inputString); |
|||
|
|||
assertArrayEquals("The first row is not correct", expected[0], result[0], 0.1); |
|||
} |
|||
|
|||
@Test |
|||
public void StringWithfourDigitNumbersToMatrix_ReturnsEquivalentMatrix() { |
|||
String inputString = "1 2\n3 4"; |
|||
double[][] expected = { { 1.0, 2.0 }, {3.0, 4.0} }; |
|||
|
|||
double[][] result = matrixMath.stringToMatrix(inputString); |
|||
|
|||
assertArrayEquals("The first row is not correct", expected[0], result[0], 0.1); |
|||
assertArrayEquals("The first row is not correct", expected[1], result[1], 0.1); |
|||
} |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue