Lukas Reichwein
5 years ago
9 changed files with 459 additions and 0 deletions
-
6pom.xml
-
156src/main/java/com/ugsbo/complexnumcalc/ComplexNumber.java
-
71src/test/java/com/ugsbo/complexnumcalc/AbsoluteValueOfComplexNumbersTest.java
-
31src/test/java/com/ugsbo/complexnumcalc/AddComplexNumbersTest.java
-
31src/test/java/com/ugsbo/complexnumcalc/DivideComplexNumbersTest.java
-
69src/test/java/com/ugsbo/complexnumcalc/EqualsComplexNumbersTest.java
-
31src/test/java/com/ugsbo/complexnumcalc/MultiplyComplexNumbersTest.java
-
31src/test/java/com/ugsbo/complexnumcalc/SubstractComplexNumbersTest.java
-
33src/test/java/com/ugsbo/complexnumcalc/conjugationOfComplexNumbersTest.java
@ -0,0 +1,156 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
public class ComplexNumber { |
|||
private Double realPart; |
|||
private Double imaginaryPart; |
|||
|
|||
/** |
|||
* @param realPart The real part of the complex Number |
|||
* @param imaginaryPart The imaginary part of the complex Number |
|||
*/ |
|||
|
|||
public ComplexNumber(Double realPart, Double imaginaryPart) { |
|||
this.realPart = realPart; |
|||
this.imaginaryPart = imaginaryPart; |
|||
} |
|||
|
|||
/** |
|||
* @return the realPart |
|||
*/ |
|||
public Double getRealPart() { |
|||
return realPart; |
|||
} |
|||
|
|||
/** |
|||
* @param realPart the realPart to set |
|||
*/ |
|||
public void setRealPart(Double realPart) { |
|||
this.realPart = realPart; |
|||
} |
|||
|
|||
/** |
|||
* @return the imaginaryPart |
|||
*/ |
|||
public Double getImaginaryPart() { |
|||
return imaginaryPart; |
|||
} |
|||
|
|||
/** |
|||
* @param imaginaryPart the imaginaryPart to set |
|||
*/ |
|||
public void setImaginaryPart(Double imaginaryPart) { |
|||
this.imaginaryPart = imaginaryPart; |
|||
} |
|||
|
|||
/** |
|||
* Checks if the given complex Number is equal to this object. |
|||
* |
|||
* @param complexNumber The number wich gets compared with this Instance |
|||
* @return True if the complex Numbers are Equal |
|||
*/ |
|||
@Override |
|||
public boolean equals(Object complexNumber) { |
|||
if (complexNumber instanceof ComplexNumber){ |
|||
ComplexNumber that = (ComplexNumber) complexNumber; |
|||
return this.realPart.equals(that.realPart) && this.imaginaryPart.equals(that.imaginaryPart); |
|||
} else { |
|||
return false; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* Adds two complex Numbers together. |
|||
* |
|||
* @param addend The complex Number. |
|||
* @return The result of adding the two complex Numbers together, as a conplex |
|||
* Number. |
|||
*/ |
|||
public ComplexNumber add(ComplexNumber addend) { |
|||
Double sumRealPart, sumImaginaryPart; |
|||
|
|||
sumRealPart = this.realPart + addend.realPart; |
|||
sumImaginaryPart = this.imaginaryPart + addend.imaginaryPart; |
|||
|
|||
ComplexNumber sum = new ComplexNumber(sumRealPart, sumImaginaryPart); |
|||
|
|||
return sum; |
|||
} |
|||
|
|||
/** |
|||
* Substracts the Subtrahend form this instance. |
|||
* |
|||
* @param subtrahend The Number wich will be substracted form the Minuend |
|||
* @return The Differenz of the Minuend and Subtrahend. |
|||
*/ |
|||
public ComplexNumber substract(ComplexNumber subtrahend) { |
|||
Double differenzRealPart, differenzImaginaryPart; |
|||
|
|||
differenzRealPart = this.realPart - subtrahend.realPart; |
|||
differenzImaginaryPart = this.imaginaryPart - subtrahend.imaginaryPart; |
|||
|
|||
ComplexNumber differenz = new ComplexNumber(differenzRealPart, differenzImaginaryPart); |
|||
|
|||
return differenz; |
|||
} |
|||
|
|||
/** |
|||
* Multiplies the faktor with this Instance. |
|||
* |
|||
* @param faktor The ComplexNumber by wich this Instance will get multiplyed |
|||
* @return The product of this Instance and the faktor |
|||
*/ |
|||
public ComplexNumber multiply(ComplexNumber faktor) { |
|||
Double productRealPart, productImaginaryPart; |
|||
|
|||
productRealPart = this.realPart * faktor.realPart - this.imaginaryPart * faktor.imaginaryPart; |
|||
productImaginaryPart = this.realPart * faktor.imaginaryPart + this.imaginaryPart * faktor.realPart; |
|||
|
|||
ComplexNumber product = new ComplexNumber(productRealPart, productImaginaryPart); |
|||
|
|||
return product; |
|||
} |
|||
|
|||
/** |
|||
* Divides the dividend by the divisor, the dividend is this Instance. |
|||
* |
|||
* @param divisor The ComplexNumber by wich this Instance will get divided |
|||
* @return The Qoutient of the Instance and the divisor |
|||
*/ |
|||
public ComplexNumber divide(ComplexNumber divisor) { |
|||
Double qoutientRealPart, qoutientImaginaryPart, tempDivisor; |
|||
|
|||
tempDivisor = divisor.realPart * divisor.realPart + divisor.imaginaryPart * divisor.imaginaryPart; |
|||
qoutientRealPart = this.realPart * divisor.realPart + this.imaginaryPart * divisor.imaginaryPart; |
|||
qoutientImaginaryPart = this.imaginaryPart * divisor.realPart - this.realPart * divisor.imaginaryPart; |
|||
qoutientImaginaryPart /= tempDivisor; |
|||
qoutientRealPart /= tempDivisor; |
|||
|
|||
ComplexNumber qoutient = new ComplexNumber(qoutientRealPart, qoutientImaginaryPart); |
|||
|
|||
return qoutient; |
|||
} |
|||
|
|||
/** |
|||
* Calucates the absolute value of this complex number |
|||
* @return the absolute value |
|||
*/ |
|||
public Double absolutValueOf(){ |
|||
Double absoluteValue = Math.sqrt(Math.pow(this.realPart, 2) + Math.pow(this.imaginaryPart, 2)) ; |
|||
return absoluteValue; |
|||
} |
|||
|
|||
/** |
|||
* Calucates the absolute value of this complex number |
|||
* @return the absolute value |
|||
*/ |
|||
public ComplexNumber conjugationOf(){ |
|||
if(this.imaginaryPart.equals(Double.valueOf(0))){ |
|||
return this; |
|||
} else { |
|||
this.imaginaryPart *= (-1); |
|||
return this; |
|||
} |
|||
|
|||
} |
|||
|
|||
} |
@ -0,0 +1,71 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.junit.Assert.assertEquals; |
|||
import org.junit.Test; |
|||
|
|||
public class AbsoluteValueOfComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumberWithOnlyARealPart_IsNotTheAbsoluteValueOfTheRealPart() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(4), Double.valueOf(0)); |
|||
Double expected = Double.valueOf(4); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number with only an real part should be the absolute value of that real part", expected, actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumberWithOnlyANegativeRealPart_IsNotTheAbsoluteValueOfTheRealPart() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(-4), Double.valueOf(0)); |
|||
Double expected = Double.valueOf(4); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number with only an negative real part should be the absolute value of that real part", expected, actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumber_IsNotTheAbsoluteValueOfIt() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(4), Double.valueOf(3)); |
|||
Double expected = Double.valueOf(5); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number should be the square root of the sum of real " + |
|||
"part times real part and imaginary part times imaginary part ", expected, actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumberWithNegativRealPart_IsNotTheAbsoluteValueOfIt() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(-4), Double.valueOf(3)); |
|||
Double expected = Double.valueOf(5); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number with negative real part should be the square root of the sum of real " + |
|||
"part times real part and imaginary part times imaginary part ", expected, actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumberWithNegativImaginaryPart_IsNotTheAbsoluteValueOfIt() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(4), Double.valueOf(-3)); |
|||
Double expected = Double.valueOf(5); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number with negative imaginary part should be the square root of the sum of real " + |
|||
"part times real part and imaginary part times imaginary part ", expected, actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TheAbsoluteValueOfAComplexNumberWithNegativParts_IsNotTheAbsoluteValueOfIt() { |
|||
ComplexNumber complexNumber = new ComplexNumber(Double.valueOf(-4), Double.valueOf(-3)); |
|||
Double expected = Double.valueOf(5); |
|||
|
|||
Double actual = complexNumber.absolutValueOf(); |
|||
|
|||
assertEquals("The absolute value of an complex number with negative parts should be the square root of the sum of real " + |
|||
"part times real part and imaginary part times imaginary part ", expected, actual); |
|||
} |
|||
} |
@ -0,0 +1,31 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.hamcrest.MatcherAssert.assertThat; |
|||
import static org.hamcrest.Matchers.*; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class AddComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void addingTwoComplexNumbersWithoutImaginaryPart() { |
|||
ComplexNumber firstAddend = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
ComplexNumber secoundAddend = new ComplexNumber(Double.valueOf(6), Double.valueOf(0)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(11), Double.valueOf(0)); |
|||
|
|||
ComplexNumber sum = firstAddend.add(secoundAddend); |
|||
|
|||
assertThat("Dont sum to the sum", sum, equalTo(expected)); |
|||
} |
|||
|
|||
@Test |
|||
public void addingTwoComplexNumbersWithImaginaryPart() { |
|||
ComplexNumber firstAddend = new ComplexNumber(Double.valueOf(5), Double.valueOf(3)); |
|||
ComplexNumber secoundAddend = new ComplexNumber(Double.valueOf(6), Double.valueOf(4)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(11), Double.valueOf(7)); |
|||
|
|||
ComplexNumber sum = firstAddend.add(secoundAddend); |
|||
|
|||
assertThat("Dont sum to the sum", sum, equalTo(expected)); |
|||
} |
|||
} |
@ -0,0 +1,31 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.hamcrest.MatcherAssert.assertThat; |
|||
import static org.hamcrest.Matchers.*; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class DivideComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void divideTwoComplexNumbersWithoutImaginaryPart() { |
|||
ComplexNumber dividend = new ComplexNumber(Double.valueOf(30), Double.valueOf(0)); |
|||
ComplexNumber divisor = new ComplexNumber(Double.valueOf(6), Double.valueOf(0)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
|
|||
ComplexNumber quotient = dividend.divide(divisor); |
|||
|
|||
assertThat("The quotient is not as expected", quotient, equalTo(expected)); |
|||
} |
|||
|
|||
@Test |
|||
public void divideTwoComplexNumbersWithImaginaryPart() { |
|||
ComplexNumber dividend = new ComplexNumber(Double.valueOf(30), Double.valueOf(28)); |
|||
ComplexNumber divisor = new ComplexNumber(Double.valueOf(6), Double.valueOf(2)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(5.9), Double.valueOf(2.7)); |
|||
|
|||
ComplexNumber quotient = dividend.divide(divisor); |
|||
|
|||
assertThat("The quotient is not as expected", quotient, equalTo(expected)); |
|||
} |
|||
} |
@ -0,0 +1,69 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.junit.Assert.assertFalse; |
|||
import static org.junit.Assert.assertTrue; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class EqualsComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void TwoEqualNumbersWithOnlyRealPart_AreNotDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertTrue("TwoEqualNumbersShouldBeEqual", actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TwoNotEqualNumbersWithOnlyRealPart_AreDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(6), Double.valueOf(0)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertFalse("TwoNotEqualNumbersShouldNotBeEqual", actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TwoEqualNumbersWithOnlyImaginaryPart_AreNotDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(0), Double.valueOf(5)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(0), Double.valueOf(5)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertTrue("TwoEqualComplexNumbersShouldBeEqual", actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TwoNotEqualNumbersWithOnlyImaginaryPart_AreDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(0), Double.valueOf(5)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(0), Double.valueOf(6)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertFalse("TwoNotEqualComplexNumbersShouldNotBeEqual", actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TwoEqualComplexNumbers_AreNotDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(5)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(5)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertTrue("TwoEqualComplexNumbersShouldBeEqual", actual); |
|||
} |
|||
|
|||
@Test |
|||
public void TwoNotEqualComplexNumbers_AreDetectedAsEqual() { |
|||
ComplexNumber firstNumber = new ComplexNumber(Double.valueOf(5), Double.valueOf(5)); |
|||
ComplexNumber secoundNumber = new ComplexNumber(Double.valueOf(6), Double.valueOf(6)); |
|||
|
|||
boolean actual = firstNumber.equals(secoundNumber); |
|||
|
|||
assertFalse("TwoNotEqualComplexNumbersShouldNotBeEqual", actual); |
|||
} |
|||
} |
@ -0,0 +1,31 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.hamcrest.MatcherAssert.assertThat; |
|||
import static org.hamcrest.Matchers.*; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class MultiplyComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void multiplyTwoComplexNumbersWithoutImaginaryPart() { |
|||
ComplexNumber firstFaktor = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
ComplexNumber secoundFaktor = new ComplexNumber(Double.valueOf(6), Double.valueOf(0)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(30), Double.valueOf(0)); |
|||
|
|||
ComplexNumber product = firstFaktor.multiply(secoundFaktor); |
|||
|
|||
assertThat("The product is not as expected", product, equalTo(expected)); |
|||
} |
|||
|
|||
@Test |
|||
public void multiplyTwoComplexNumbersWithImaginaryPart() { |
|||
ComplexNumber firstFaktor = new ComplexNumber(Double.valueOf(5), Double.valueOf(3)); |
|||
ComplexNumber secoundFaktor = new ComplexNumber(Double.valueOf(6), Double.valueOf(2)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(24.0), Double.valueOf(28.0)); |
|||
|
|||
ComplexNumber product = firstFaktor.multiply(secoundFaktor); |
|||
|
|||
assertThat("The product is not as expected", product, equalTo(expected)); |
|||
} |
|||
} |
@ -0,0 +1,31 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.hamcrest.MatcherAssert.assertThat; |
|||
import static org.hamcrest.Matchers.*; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class SubstractComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void substractTwoComplexNumbersWithoutImaginaryPart() { |
|||
ComplexNumber minuend = new ComplexNumber(Double.valueOf(5), Double.valueOf(0)); |
|||
ComplexNumber subtrahend = new ComplexNumber(Double.valueOf(6), Double.valueOf(0)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(-1), Double.valueOf(0)); |
|||
|
|||
ComplexNumber difference = minuend.substract(subtrahend); |
|||
|
|||
assertThat("The difference is not as expected", difference, equalTo(expected)); |
|||
} |
|||
|
|||
@Test |
|||
public void substractTwoComplexNumbersWithImaginaryPart() { |
|||
ComplexNumber minuend = new ComplexNumber(Double.valueOf(5), Double.valueOf(5)); |
|||
ComplexNumber subtrahend = new ComplexNumber(Double.valueOf(6), Double.valueOf(4)); |
|||
ComplexNumber expected = new ComplexNumber(Double.valueOf(-1), Double.valueOf(1)); |
|||
|
|||
ComplexNumber difference = minuend.substract(subtrahend); |
|||
|
|||
assertThat("The difference is not as expected", difference, equalTo(expected)); |
|||
} |
|||
} |
@ -0,0 +1,33 @@ |
|||
package com.ugsbo.complexnumcalc; |
|||
|
|||
import static org.hamcrest.MatcherAssert.assertThat; |
|||
import static org.hamcrest.Matchers.*; |
|||
|
|||
import org.junit.Test; |
|||
|
|||
public class conjugationOfComplexNumbersTest { |
|||
|
|||
@Test |
|||
public void TheConjugatedComplexNumberOfAComplexNumberWithOnlyARealPartShouldBeTheRealPart_ButItIsNot() { |
|||
Double realPart = Double.valueOf(4); |
|||
Double imaginaryPart = Double.valueOf(0); |
|||
ComplexNumber complexNumber = new ComplexNumber(realPart, imaginaryPart); |
|||
ComplexNumber expected = new ComplexNumber(realPart, imaginaryPart); |
|||
|
|||
ComplexNumber actual = complexNumber.conjugationOf(); |
|||
|
|||
assertThat("The conjugated complex Number of a complex number with only a real part is the real part", expected, equalTo(actual)); |
|||
} |
|||
|
|||
@Test |
|||
public void TheConjugatedComplexNumberOfAComplexNumberShouldBeTheComplexNumberWithSwapedSignImaginaryPart_ButItIsNot() { |
|||
Double realPart = Double.valueOf(4); |
|||
Double imaginaryPart = Double.valueOf(5); |
|||
ComplexNumber complexNumber = new ComplexNumber(realPart, imaginaryPart); |
|||
ComplexNumber expected = new ComplexNumber(realPart, -imaginaryPart); |
|||
|
|||
ComplexNumber actual = complexNumber.conjugationOf(); |
|||
|
|||
assertThat("The conjugated complex number of a complex number is the complex number with swaped sign in the imaginary part", expected, equalTo(actual)); |
|||
} |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue